Câu hỏi:

08/12/2025 36 Lưu

(0,5 điểm) Cho ba số \[a,\,\,b,\,\,c\] đôi một khác nhau và thỏa mãn:

\[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}.\]

Tính giá trị biểu thức \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right).\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\].

Theo bài, \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\] nên suy ra \[ab + bc + ca = 0.\]

Đặt \[x = ab;y = bc;z = ca.\]

Khi đó \[x + y + z = 0.\] Suy ra \(x + y =  - z;\,\,y + z =  - x;\,\,z + x =  - y.\)

Xét \[\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right) = \left( {1 + \frac{{ab}}{{bc}}} \right)\left( {1 + \frac{{bc}}{{ca}}} \right)\left( {1 + \frac{{ca}}{{ab}}} \right)\]

\[ = \left( {1 + \frac{x}{y}} \right)\left( {1 + \frac{y}{z}} \right)\left( {1 + \frac{z}{x}} \right)\]

\[ = \left( {\frac{{y + x}}{y}} \right)\left( {\frac{{z + y}}{z}} \right)\left( {\frac{{x + z}}{x}} \right)\]

\[ = \frac{{ - z}}{y}.\frac{{ - x}}{z}.\frac{{ - y}}{x} =  - 1.\]

Xét \[\frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} = \frac{{{x^3} + {y^3} + {z^3}}}{{3xyz}}\]

 \[ = \frac{{{{\left( {x + y} \right)}^3} - 3xy\left( {x + y} \right) + {z^3}}}{{3xyz}}\]

 \[ = \frac{{{{\left( { - z} \right)}^3} - 3xy\left( { - z} \right) + {z^3}}}{{3xyz}}\]

 \[ = \frac{{ - {z^3} + 3xyz + {z^3}}}{{3xyz}} = \frac{{3xyz}}{{3xyz}} = 1.\]

Từ đó, \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right) = 1 + \left( { - 1} \right) = 0.\]

Vậy \(T = 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có \(1 - {x^3} = \left( {1 - x} \right)\left( {1 + x + {x^2}} \right)\)

\[\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}} = \frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}.\]

Khi đó biểu thức \(P\) xác định khi và chỉ khi \(\left\{ \begin{array}{l}x - 1 \ne 0\\1 - {x^3} \ne 0\\x + 1 \ne 0\\\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}} \ne 0\end{array} \right.\)nên \(\left\{ \begin{array}{l}x \ne 1\\1 - x \ne 0\\1 + x + {x^2} \ne 0\\x \ne  - 1\\2x\, + \,\,1 \ne 0\\{\left( {x + 1} \right)^2} \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x \ne 1\\x \ne  - 1\\x \ne  - \frac{1}{2}.\end{array} \right.\)

Vậy với \(x \ne 1\,;\,\,x \ne  - 1\) và \(x \ne  - \frac{1}{2}\) thì biểu thức \(P\) xác định.

b) Với \(x \ne 1\,;\,\,x \ne  - 1\) và \(x \ne  - \frac{1}{2},\) ta có:

\[P = \,\left( {\frac{1}{{x - 1}} - \frac{x}{{1 - \,{x^3}}}.\frac{{{x^2} + \,x\, + \,1}}{{x\, + 1}}} \right)\,:\,\frac{{2x\, + \,\,1}}{{{x^{2\,}} + 2x\, + \,1}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)}}.\frac{{{x^2} + \,x\, + \,1}}{{x\, + 1}}} \right]\,:\,\frac{{2x\, + \,\,1}}{{{{\left( {x\, + 1} \right)}^2}}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} - \frac{x}{{\left( {1 - x} \right)\left( {x\, + 1} \right)}}} \right] \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\left[ {\frac{1}{{x - 1}} + \frac{x}{{\left( {x - 1} \right)\left( {x\, + 1} \right)}}} \right] \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\frac{{\left( {x\, + 1} \right) + x}}{{\left( {x - 1} \right)\left( {x\, + 1} \right)}} \cdot \frac{{{{\left( {x\, + 1} \right)}^2}}}{{2x\, + \,\,1}}\]

\[ = \,\frac{{\left( {2x + 1} \right) \cdot {{\left( {x\, + 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x\, + 1} \right) \cdot \left( {2x\, + \,\,1} \right)}}\]\[ = \,\frac{{x\, + 1}}{{x - 1}}.\]

Vậy với \(x \ne 1;x \ne  - 1\) và \(x \ne  - \frac{1}{2}\) thì \(P = \,\frac{{x\, + 1}}{{x - 1}}.\)

c) Thay \[x = \,\frac{1}{2}\] (thỏa mãn điều kiện) vào biểu thức \(P = \,\frac{{x\, + 1}}{{x - 1}},\) ta được: \(P = \,\frac{{\frac{1}{2}\, + 1}}{{\frac{1}{2} - 1}} = \frac{{\frac{3}{2}}}{{\frac{1}{2}}} = 3.\)

Vậy \(P = 3\) khi \[x = \,\frac{1}{2}.\]

Lời giải

Hướng dẫn giải

a) \(4{x^2} - 6x\)

\( = 2x\left( {2x - 3} \right).\)

b) \(25{\left( {x - y} \right)^2} - 16{\left( {x + y} \right)^2}\)

\( = {\left[ {5\left( {x - y} \right)} \right]^2} - {\left[ {4\left( {x + y} \right)} \right]^2}\)

\[ = {\left( {5x - 5y} \right)^2} - {\left( {4x + 4y} \right)^2}\]

\[ = \left[ {5x - 5y - \left( {4x + 4y} \right)} \right]\left[ {5x - 5y + \left( {4x + 4y} \right)} \right]\]

\[ = \left( {5x - 5y - 4x - 4y} \right)\left( {5x - 5y + 4x + 4y} \right)\]

\[ = \left( {x - 9y} \right)\left( {9x - y} \right).\]

Câu 4

A. \(\left( {{x^2} + x} \right){y^2}.\)     
B. \(2{x^3}{y^2}.\)              
C. \(x\left( {x + 1} \right)y.\)                        
D. \(2x{y^2}{\left( {y - 1} \right)^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[60^\circ .\]       
B. \[80^\circ .\]       
C. \[90^\circ .\]                             
D. \[100^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({S_{xq}} = \frac{1}{2}pd.\)            
B. \({S_{xq}} = \frac{1}{3}pd.\)              
C. \({S_{xq}} = pd.\) 
D. \({S_{xq}} = 2pd.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP