Câu hỏi:

08/12/2025 16 Lưu

(1,5 điểm) Một công ty cho thuê thuyền du lịch tính phí thuê thuyền là 1 triệu đồng, ngoài ra tính phí sử dụng 500 nghìn đồng một giờ.

a) Viết công thức của hàm số biểu thị tổng chi phí \[y\] (nghìn đồng) để thuê một chiếc thuyền du lịch trong \[x\] (giờ).

b) Vẽ đồ thị của hàm số thu được ở câu a để tìm tổng chi phí cho một lần thuê trong 3 giờ.

c) Giao điểm của đồ thị với trục tung biểu thị điều gì?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) 1 triệu đồng \[ = 1{\rm{ }}000\] nghìn đồng.

Hàm số biểu thị tổng chi phí \[y\] (nghìn đồng) để thuê một chiếc thuyền du lịch trong \[x\] (giờ) là: \[y = 1{\rm{ }}000 + 500x\] (nghìn đồng).

b) Đồ thị hàm số \[y = 1{\rm{ }}000 + 500x\] đi qua hai điểm \[\left( {--2\,;\,\,0} \right)\]\[\left( {0\,;\,\,1{\rm{ }}000} \right)\] nên đồ thị hàm số được vẽ như hình dưới.

Một công ty cho thuê thuyền du lịch tính phí thuê thuyền là 1 triệu đồng, ngoài ra tính phí sử dụng 500 nghìn đồng một giờ.  a) Viết công thức của hàm số biểu thị tổng chi phí \[y\] (nghìn đồng) để thuê một chiếc thuyền du lịch trong \[x\] (giờ). (ảnh 1)

Tổng chi phí cho một lần thuê trong \[x = 3\] giờ tương ứng với điểm \[y = 2{\rm{ }}500\] nghìn đồng = 2 triệu 500 nghìn đồng.

c) Giao điểm của đồ thị với trục tung là điểm \[\left( {0\,;\,\,\,1{\rm{ }}000} \right).\] Giao điểm này biểu thị chi phí cố định khi thuê thuyền, dù không sử dụng giờ nào (tức là \[x = 0)\] vẫn phải trả phí 1 triệu đồng này, nếu đặt thuê.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \[2{x^2} - 8x = 0\]

\[2x\left( {x - 4} \right) = 0\]

Suy ra \[2x = 0\] hoặc \[x - 4 = 0\]

 \[x = 0\] hoặc \[x = 4\]

Vậy \(x \in \left\{ {0;\,\,4} \right\}\).

b) \({\left( {x + 2} \right)^2} - x\left( {x - 1} \right) = 10\)

\({x^2} + 4x + 4 - {x^2} + x = 10\)

\[\left( {{x^2} - {x^2}} \right) + \left( {4x + x} \right) = 10 - 4\]

\(5x = 6\)

\(x = \frac{6}{5}\)

Vậy\(x = \frac{6}{5}\).

c) \[{x^3} - 6{x^2} + 9x = 0\]

\[x\left( {{x^2} - 6x + 9} \right) = 0\]

\[x{\left( {x - 3} \right)^2} = 0\]

Suy ra \[x = 0\] hoặc \[{\left( {x - 3} \right)^2} = 0{\rm{ }}\]

 \[x = 0\] hoặc \[x - 3 = 0{\rm{ }}\]

 \[x = 0\] hoặc \[x = 3\]

Vậy \(x \in \left\{ {0;\,\,3} \right\}\).

Lời giải

Hướng dẫn giải

Ta có \({a^2} + {b^2} + {c^2} = ab + bc + ca\)

\(2{a^2} + 2{b^2} + 2{c^2} = 2ab + 2bc + 2ca\)

\(2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca = 0\)

\(\left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ac + {a^2}} \right) = 0\)

\({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} = 0\) (*)

Nhận xét: Với mọi \(a,b,c\) ta có \({\left( {a - b} \right)^2} \ge 0;\,{\left( {b - c} \right)^2} \ge 0;{\left( {c - a} \right)^2} \ge 0\)

Khi đó, \({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\)

Do đó để (*) xảy ra thì \[\left\{ \begin{array}{l}{\left( {a - b} \right)^2} = 0\\{\left( {b - c} \right)^2} = 0\\{\left( {c - a} \right)^2} = 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}a - b = 0\\b - c = 0\\c - a = 0\end{array} \right.\] tức là \[\left\{ \begin{array}{l}a = b\\b = c\\c = a\end{array} \right.\].

Khi đó \[a = b = c\]\(a + b + c = 2025\)

Do đó \[a = b = c = \frac{{2\,\,025}}{3} = 675.\]

Câu 5

A. Khi \(a < 0\) thì góc tạo bởi đường thẳng \(y = ax + b\) và trục \[Ox\] là góc nhọn.        
B. Khi \(a = 0\) thì đường thẳng \(y = ax + b\) song song với trục \(Oy.\)        
C. Đường thẳng \(y = ax + b\) đi qua điểm \(\left( {0;b} \right).\)        
D. Với \(a \ne 0,\) khi \(a\) càng lớn thì góc tạo bởi đường thẳng \(y = ax + b\) và trục \[Ox\] càng nhỏ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

  A. Hai đường chéo vuông góc.        
B. Hai đường chéo bằng nhau.        
C. Hai cạnh kề bằng nhau.        
D. Một đường chéo là tia phân giác của một góc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP