Câu hỏi:

08/12/2025 13 Lưu

Một hình chóp đều và một hình lăng trụ đứng có diện tích đáy bằng nhau. Chiều cao của hình chóp đều gấp đôi chiều cao của hình lăng trụ đứng. Thể tích của hình chóp đều là

A. \(V = \frac{1}{3}Sh.\)                                

B. \[V = Sh.\] 
C. \(V = \frac{2}{3}Sh.\)                        
D. \(V = 2Sh.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Gọi \(S\)\(h\) lần lượt là diện tích đáy và chiều cao của hình lăng trụ đứng. Khi đó hình chóp đều có diện tích đáy \(S\) và chiều cao \(2h.\)

Thể tích của hình chóp đều là \(V = \frac{1}{3}S \cdot 2h = \frac{2}{3}Sh.\)

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Ta có \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right).\)

\({x^2} + x + 1 = {x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\) với mọi \(x.\)

Điều kiện xác định của biểu thức \(A\) là \({x^2} - 4 \ne 0,\) \(x - 1 \ne 0\) hay \(x - 2 \ne 0,\) \(x + 2 \ne 0\) và \(x - 1 \ne 0\), tức là \(x \ne 2,x \ne  - 2\) và \(x \ne 1.\)

Vậy điều kiện xác định của biểu thức \(A\) là \(x \ne 2,x \ne  - 2\) và \(x \ne 1.\)

b) Với \(x \ne 2,x \ne  - 2\) và \(x \ne 1,\) ta có:

\[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right)\]

\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{1}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}}\)

\( = \frac{{{x^2} + x + 1}}{{{x^2} - 4}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 4}}\)

\( = \frac{{{x^2} + x + 1 - \left( {{x^2} - 1} \right)}}{{{x^2} - 4}}\)

\( = \frac{{{x^2} + x + 1 - {x^2} + 1}}{{{x^2} - 4}}\)

\[ = \frac{{x + 2}}{{{x^2} - 4}} = \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x - 2}}.\]

Vậy với \(x \ne 2,x \ne  - 2\) và \(x \ne 1,\) thì \(A = \frac{1}{{x - 2}}.\)

c) Ta có \(\left| {x + 3} \right| = 1\) suy ra \(x + 3 = 1\) hoặc \(x + 3 =  - 1\)

Do đó \(x =  - 2\) (không thỏa mãn điều kiện) hoặc \(x =  - 4\) (thỏa mãn điều kiện)

Thay \(x =  - 4\) vào biểu thức \(A = \frac{1}{{x - 2}},\) ta được: \(A = \frac{1}{{ - 4 - 2}} =  - \frac{1}{6}.\)

Vậy \(A =  - \frac{1}{6}\) khi \(\left| {x + 3} \right| = 1.\)

Lời giải

Hướng dẫn giải

a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\)

\({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\)

\({x^2} - 4x + 4 - {x^2} + 9 = 6\)

\(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\)

\( - 4x =  - 7\)

\(x = \frac{7}{4}\)

Vậy \(x = \frac{7}{4}.\)

b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\)

\(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\)

\(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\)

Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\)

\(x = 3\) hoặc \(2x =  - 5\)

\(x = 3\) hoặc \(x =  - \frac{5}{2}.\)

Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\)

c) \(2{x^2} - x - 6 = 0\)

\(2{x^2} - 4x + 3x - 6 = 0\)

\(2x\left( {x - 2} \right) + 3\left( {x - 2} \right) = 0\)

\(\left( {x - 2} \right)\left( {2x + 3} \right) = 0\)

Suy ra \(x - 2 = 0\) hoặc \(2x + 3 = 0\)

\(x = 2\) hoặc \(2x =  - 3\)

\(x = 2\) hoặc \(x =  - \frac{3}{2}.\)

Vậy \(x \in \left\{ {2; - \frac{3}{2}} \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(5.\)                         
B. \(4.\)                         
C. \(3.\)  
D. \( - 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{ - 1 - {x^2}}}{{xy + {y^2}}}.\]                         
B. \[ - \frac{{1 - {x^2}}}{{xy + {y^2}}}.\]                         
C. \[ - \frac{{xy + {y^2}}}{{1 - {x^2}}}.\]                         
D. \[\frac{{xy + {y^2}}}{{ - 1 - {x^2}}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Tứ giác \[ABCD\] là hình thoi có hai đường chéo bằng nhau.
B. Tứ giác \[ABCD\] là hình thoi có một góc vuông.
C. Tứ giác \[ABCD\] là hình thoi có hai đường chéo vuông góc.
D. Tứ giác \[ABCD\] là hình chữ nhật có hai cạnh kề bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP