Một hình chóp đều và một hình lăng trụ đứng có diện tích đáy bằng nhau. Chiều cao của hình chóp đều gấp đôi chiều cao của hình lăng trụ đứng. Thể tích của hình chóp đều là
Một hình chóp đều và một hình lăng trụ đứng có diện tích đáy bằng nhau. Chiều cao của hình chóp đều gấp đôi chiều cao của hình lăng trụ đứng. Thể tích của hình chóp đều là
A. \(V = \frac{1}{3}Sh.\)
Câu hỏi trong đề: Bộ 10 đề thi cuối kì Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Gọi \(S\) và \(h\) lần lượt là diện tích đáy và chiều cao của hình lăng trụ đứng. Khi đó hình chóp đều có diện tích đáy \(S\) và chiều cao \(2h.\)
Thể tích của hình chóp đều là \(V = \frac{1}{3}S \cdot 2h = \frac{2}{3}Sh.\)
Vậy ta chọn phương án C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right).\)
\({x^2} + x + 1 = {x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\) với mọi \(x.\)
Điều kiện xác định của biểu thức \(A\) là \({x^2} - 4 \ne 0,\) \(x - 1 \ne 0\) hay \(x - 2 \ne 0,\) \(x + 2 \ne 0\) và \(x - 1 \ne 0\), tức là \(x \ne 2,x \ne - 2\) và \(x \ne 1.\)
Vậy điều kiện xác định của biểu thức \(A\) là \(x \ne 2,x \ne - 2\) và \(x \ne 1.\)
b) Với \(x \ne 2,x \ne - 2\) và \(x \ne 1,\) ta có:
\[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right)\]
\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{1}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}}\)
\( = \frac{{{x^2} + x + 1}}{{{x^2} - 4}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 4}}\)
\( = \frac{{{x^2} + x + 1 - \left( {{x^2} - 1} \right)}}{{{x^2} - 4}}\)
\( = \frac{{{x^2} + x + 1 - {x^2} + 1}}{{{x^2} - 4}}\)
\[ = \frac{{x + 2}}{{{x^2} - 4}} = \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x - 2}}.\]
Vậy với \(x \ne 2,x \ne - 2\) và \(x \ne 1,\) thì \(A = \frac{1}{{x - 2}}.\)
c) Ta có \(\left| {x + 3} \right| = 1\) suy ra \(x + 3 = 1\) hoặc \(x + 3 = - 1\)
Do đó \(x = - 2\) (không thỏa mãn điều kiện) hoặc \(x = - 4\) (thỏa mãn điều kiện)
Thay \(x = - 4\) vào biểu thức \(A = \frac{1}{{x - 2}},\) ta được: \(A = \frac{1}{{ - 4 - 2}} = - \frac{1}{6}.\)
Vậy \(A = - \frac{1}{6}\) khi \(\left| {x + 3} \right| = 1.\)
Lời giải
Hướng dẫn giải
|
a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\) \({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\) \({x^2} - 4x + 4 - {x^2} + 9 = 6\) \(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\) \( - 4x = - 7\) \(x = \frac{7}{4}\) Vậy \(x = \frac{7}{4}.\) |
b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\) \(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\) \(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\) Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\) \(x = 3\) hoặc \(2x = - 5\) \(x = 3\) hoặc \(x = - \frac{5}{2}.\) Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\) |
c) \(2{x^2} - x - 6 = 0\)
\(2{x^2} - 4x + 3x - 6 = 0\)
\(2x\left( {x - 2} \right) + 3\left( {x - 2} \right) = 0\)
\(\left( {x - 2} \right)\left( {2x + 3} \right) = 0\)
Suy ra \(x - 2 = 0\) hoặc \(2x + 3 = 0\)
\(x = 2\) hoặc \(2x = - 3\)
\(x = 2\) hoặc \(x = - \frac{3}{2}.\)
Vậy \(x \in \left\{ {2; - \frac{3}{2}} \right\}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
