PHẦN II. TỰ LUẬN
Một vận động viên đua xe F đang chạy với vận tốc 10 (m/s) thì anh ta tăng tốc với gia tốc a(t) = 6t (m/s2), trong đó t là khoảng thời gian tính bằng giây kể từ lúc tăng tốc. Hỏi quãng đường xe của anh ta đi được trong thời gian 10 giây kể từ lúc bắt đầu tăng tốc là bao nhiêu mét?
PHẦN II. TỰ LUẬN
Một vận động viên đua xe F đang chạy với vận tốc 10 (m/s) thì anh ta tăng tốc với gia tốc a(t) = 6t (m/s2), trong đó t là khoảng thời gian tính bằng giây kể từ lúc tăng tốc. Hỏi quãng đường xe của anh ta đi được trong thời gian 10 giây kể từ lúc bắt đầu tăng tốc là bao nhiêu mét?
Quảng cáo
Trả lời:
Ta có \(v\left( t \right) = \int {a\left( t \right)dt} = \int {6tdt} = 3{t^2} + C\).
Do khi bắt đầu tăng tốc \({v_0} = 10{\rm{m/s}}\). Suy ra \(C = 10\).
Do đó \(v\left( t \right) = 3{t^2} + 10\).
Quãng đường anh ta đi được trong thời gian 10 giây là \(S = \int\limits_0^{10} {\left( {3{t^2} + 10} \right)dt} = 1100\)(m).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(AB = 4{\rm{dm}}\) và \(BC = 8{\rm{dm}}\)nên \(A\left( { - 2;4} \right),B\left( {2;4} \right),C\left( {2; - 4} \right),D\left( { - 2; - 4} \right)\).
Ta có \(\left( P \right):y = {x^2}\) hoặc \(y = - {x^2}\).
Diện tích phần tô đậm là \({S_1} = 4\int\limits_0^2 {{x^2}dx} = \frac{{32}}{3}\)(dm2).
Diện tích hình chữ nhật là \(S = 4.8 = 32\)(dm2).
Diện tích phần trắng là: \({S_2} = S - {S_1} = 32 - \frac{{32}}{3} = \frac{{64}}{3}\)(dm2).
Lời giải
Chọn hệ trục tọa độ như hình vẽ

Ta có \(A\left( {0;0;0} \right),\overrightarrow {AE} = \left( {0;0;1} \right),\overrightarrow {CD} = \left( {0; - 1;0} \right)\).
Đặt \(M\left( {a;b;c} \right)\). Suy ra \(\overrightarrow {AM} = \left( {a;b;c} \right)\).
Để cho \(\overrightarrow {AM} + \overrightarrow {AE} = 3\overrightarrow {CD} \) ta được \(\left\{ \begin{array}{l}a + 0 = 0\\b + 0 = - 3\\c + 1 = 0\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = 0\\b = - 3\\c = - 1\end{array} \right.\). Suy ra \(M\left( {0; - 3; - 1} \right)\).
Phương trình mặt phẳng \(\left( {EBD} \right)\) có dạng: \(x + y + z - 1 = 0\).
Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {EBD} \right)\) bằng
\(d\left( {M,\left( {EBD} \right)} \right) = \frac{{\left| {0 - 3 - 1 - 1} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{5\sqrt 3 }}{3}\).
Vậy khoảng cách cần tìm bằng \(\frac{{5\sqrt 3 }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
