Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = \sin 2x\), biết \(F\left( 0 \right) = 1\).
Quảng cáo
Trả lời:
Đáp án đúng là: D
\(F\left( x \right) = \int {f\left( x \right)dx} = \int {\sin 2xdx} = - \frac{1}{2}\cos 2x + C\).
Vì \(F\left( 0 \right) = 1\) nên \( - \frac{1}{2} + C = 1 \Leftrightarrow C = \frac{3}{2}\).
Do đó \(F\left( x \right) = - \frac{1}{2}\cos 2x + \frac{3}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(g\left( 3 \right) = \int\limits_0^3 {f\left( t \right){\rm{d}}t} = \int\limits_0^1 {f\left( t \right){\rm{d}}t} + \int\limits_1^2 {f\left( t \right){\rm{d}}t} + \int\limits_2^3 {f\left( t \right){\rm{d}}t} \)
\( = \int\limits_0^1 {{\rm{2d}}t} + \int\limits_1^2 {{\rm{2}}t{\rm{d}}t} + \int\limits_2^3 {\left( {12 - 4t} \right){\rm{d}}t} \)
\( = \left. {2t} \right|_0^1 + \left. {{t^2}} \right|_1^2 + \left. {\left( {12t - 2{t^2}} \right)} \right|_2^3 = 7\).
Lời giải
Trả lời: −2,5
Mặt phẳng \(\left( P \right)//\left( \alpha \right)\) nên mặt phẳng \(\left( P \right)\) có dạng: \(2x - y + d = 0\left( {d \ne - 1} \right)\).
Vì \((P)\) đi qua \(M\left( {1;0;0} \right)\) nên \(2.1 - 0 + d = 0 \Leftrightarrow d = - 2\).
Do đó \((P):2x - y - 2 = 0\) \( \Leftrightarrow - x + \frac{1}{2}y + 1 = 0\).
Suy ra \(b = \frac{1}{2};c = 0;d = 1\). Do đó \(b + c - 3d = - 2,5\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
