Dạng 3. Trắc nghiệm trả lời ngắn
Cho hình chóp \(S.ABC\). Gọi \(K,N\) lần lượt là trung điểm \(SA,BC\) và \(M\)là điểm thuộc đoạn \(SC\) sao cho \(3SM = 2MC\). Mặt phẳng \(\left( {KMN} \right)\) cắt \(AB\) tại \(I\). Tính \(\frac{{IA}}{{IB}}\) (làm tròn kết quả đến hàng phần trăm).
Dạng 3. Trắc nghiệm trả lời ngắn
Cho hình chóp \(S.ABC\). Gọi \(K,N\) lần lượt là trung điểm \(SA,BC\) và \(M\)là điểm thuộc đoạn \(SC\) sao cho \(3SM = 2MC\). Mặt phẳng \(\left( {KMN} \right)\) cắt \(AB\) tại \(I\). Tính \(\frac{{IA}}{{IB}}\) (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:
Trong mặt phẳng \(\left( {SAC} \right)\), gọi H là giao điểm của \(KM\) và \(AC\).
Trong mặt phẳng \(\left( {ABC} \right)\), gọi \(I\) là giao điểm của \(HN\) và \(AB\).
Khi đó \(I = AB \cap \left( {KMN} \right)\).
Ta có \(\frac{{SM}}{{MC}} \cdot \frac{{CH}}{{HA}} \cdot \frac{{AK}}{{KS}} = 1\)\( \Leftrightarrow \frac{2}{3} \cdot \frac{{CH}}{{HA}} \cdot 1 = 1 \Rightarrow \frac{{CH}}{{HA}} = \frac{3}{2}\).
Lại có \(\frac{{BN}}{{NC}} \cdot \frac{{CH}}{{HA}} \cdot \frac{{AI}}{{IB}} = 1\)\( \Leftrightarrow 1 \cdot \frac{3}{2} \cdot \frac{{AI}}{{IB}} = 1 \Rightarrow \frac{{AI}}{{IB}} = \frac{2}{3} \approx 0,67\).
Trả lời: 0,67.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(ABCD\) là hình bình hành nên \(AB//CD\).
Mà \(M \in \left( {MAB} \right) \cap \left( {SCD} \right)\) nên giao tuyến của hai mặt phẳng này là đường thẳng qua \(M\) và song song với \(CD\) cắt \(SD\) tại \(H\).
Suy ra \(H = SD \cap \left( {MAB} \right)\).
Vì \(MH//CD\) nên \(\frac{{SH}}{{SD}} = \frac{{SM}}{{SC}} = \frac{1}{3} \approx 0,33\).
Trả lời: 0,33.
Lời giải
a) Do \(A'D'CB\) là hình bình hành suy ra \(A'B//CD' \Rightarrow A'B//\left( {B'D'C} \right)\) (1).
Tương tự \(A'B'//CD;A'B' = CD\) nên \(A'B'CD\) là hình bình hành.
Suy ra \(A'D//B'C \Rightarrow A'D//\left( {B'D'C} \right)\) (2).
Từ (1) và (2), suy ra \(\left( {A'BD} \right)//\left( {B'D'C} \right)\).
b) Ta có \({G_1}\) là trọng tâm tam giác \(A'BD\) nên \(\frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\) \( \Rightarrow {G_1}\) là trọng tâm tam giác \(A'AC\).
Suy ra \({G_1} = AI \cap A'O\) (3).
Tương tự \({G_2}\) là trọng tâm tam giác \(B'D'C\) nên \(\frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\) \( \Rightarrow {G_2}\) là trọng tâm tam giác \(A'C'C\).
Suy ra \({G_2} = C'I \cap CO'\) (4).
Từ (3) và (4) suy ra \({G_1},{G_2}\) cùng thuộc \(AC'\).
Lại có \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow \frac{{A{G_1}}}{{AC'}} = \frac{1}{3};\frac{{C'{G_2}}}{{C'I}} = \frac{2}{3} \Rightarrow \frac{{C'{G_2}}}{{AC'}} = \frac{1}{3}\).
Do vậy \(A{G_1} = {G_1}{G_2} = {G_2}C' = \frac{1}{3}AC'\).
Vậy \({G_1},{G_2}\) cùng thuộc \(AC'\) đồng thời chia \(AC'\) thành ba phần bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(OM//\left( {SCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) \(MN//\left( {SCD} \right)\).
b) Nếu \(E\) là giao điểm của \(\left( {MNG} \right)\) và \(BC\) thì tứ giác \(MNEF\) là hình thang đáy lớn là \(EF\) và \(EF = \frac{3}{2}MN\)
c) \(SC\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Đường thẳng \(AM\) nằm trong mặt phẳng \(\left( {SAC} \right)\).
b) Giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).
c) Giao điểm của đường thẳng \(AM\) và mặt phẳng \(SBD\) là giao điểm của \(AM\) và \(SO\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
