Câu hỏi:

09/12/2025 173 Lưu

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang với \(AB//CD\) và \(AB = 2CD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB,BC\).

a) Xác định giao tuyến của mặt phẳng \(\left( {SMN} \right)\) và \(\left( {SCD} \right)\).

b) Gọi \(E\) và \(G\) lần lượt là trọng tâm của các tam giác \(SAB\) và \(SBC\). Chứng minh \(EG//\left( {ABCD} \right)\).

c) Gọi \(\left( \alpha  \right)\) là mặt phẳng đi qua đường thẳng \(EG\) và song song với mặt phẳng \(\left( {ABCD} \right)\). Xác định giao điểm của \(\left( \alpha  \right)\) với đường thẳng \(SD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có ABCD là hình thang với AB//CD và AB = 2CD. Gọi M và N lần lượt là trung điểm của AB,BC.  a) Xác định giao tuyến của mặt phẳng (SMN) và (SCD). (ảnh 1)

a) Trong mặt phẳng \(\left( {ABCD} \right)\) có \(AB//CD\) và \(MN\) cắt \(AB\) nên đường thẳng \(MN\) cắt đường thẳng \(CD\) tại I.

Ta có \(I,S\) là các điểm chung của mặt phẳng \(\left( {SMN} \right)\) và mặt phẳng \(\left( {SCD} \right)\) nên giao tuyến của hai mặt phẳng này là đường thẳng \(SI\).

b) \(E\) và \(G\) lần lượt là trọng tâm của các tam giác \(SAB\) và \(SBC\) nên \(E \in SM,G \in SN\) và \(\frac{{SE}}{{SM}} = \frac{2}{3};\frac{{SG}}{{SN}} = \frac{2}{3}\)

Trong tam giác \(SMN\) có \(\frac{{SE}}{{SM}} = \frac{{SG}}{{SN}}\) nên \(EG//MN\) mà \(MN \subset \left( {ABCD} \right)\)\( \Rightarrow EG//\left( {ABCD} \right)\).

c) Ta có \(\left. \begin{array}{l}\left( \alpha  \right)//\left( {ABCD} \right)\\\left( {SMD} \right) \cap \left( {ABCD} \right) = MD\\E \in \left( {SMD} \right) \cap \left( \alpha  \right)\end{array} \right\} \Rightarrow \left( {SMD} \right) \cap \left( \alpha  \right) = Ex\) với \(Ex//MD,Ex \cap SD = K\).

Vậy \(K = \left( \alpha  \right) \cap SD\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trên cạnh SC lấy điểm M sao cho CM = 2SM. Gọi H là giao điểm của mặt phẳng (ABM) với đường thẳng SD. Tính tỉ số SH/SD (ảnh 1)

Vì \(ABCD\) là hình bình hành nên \(AB//CD\).

Mà \(M \in \left( {MAB} \right) \cap \left( {SCD} \right)\) nên giao tuyến của hai mặt phẳng này là đường thẳng qua \(M\) và song song với \(CD\) cắt \(SD\) tại \(H\).

Suy ra \(H = SD \cap \left( {MAB} \right)\).

Vì \(MH//CD\) nên \(\frac{{SH}}{{SD}} = \frac{{SM}}{{SC}} = \frac{1}{3} \approx 0,33\).

Trả lời: 0,33.

Lời giải

Cho hình hộp ABCD.A'B'C'D'. Gọi G1;G2 là trọng tâm của các tam giác A'BD,B'D'C.  a) Chứng minh rằng (A'BD) // (B'D'C). (ảnh 1)

a) Do \(A'D'CB\) là hình bình hành suy ra \(A'B//CD' \Rightarrow A'B//\left( {B'D'C} \right)\) (1).

Tương tự \(A'B'//CD;A'B' = CD\) nên \(A'B'CD\) là hình bình hành.

Suy ra \(A'D//B'C \Rightarrow A'D//\left( {B'D'C} \right)\) (2).

Từ (1) và (2), suy ra \(\left( {A'BD} \right)//\left( {B'D'C} \right)\).

b) Ta có \({G_1}\) là trọng tâm tam giác \(A'BD\) nên \(\frac{{A'{G_1}}}{{A'O}} = \frac{2}{3}\) \( \Rightarrow {G_1}\) là trọng tâm tam giác \(A'AC\).

Suy ra \({G_1} = AI \cap A'O\) (3).

Tương tự \({G_2}\) là trọng tâm tam giác \(B'D'C\) nên \(\frac{{C{G_2}}}{{CO'}} = \frac{2}{3}\) \( \Rightarrow {G_2}\) là trọng tâm tam giác \(A'C'C\).

Suy ra \({G_2} = C'I \cap CO'\) (4).

Từ (3) và (4) suy ra \({G_1},{G_2}\) cùng thuộc \(AC'\).

Lại có \(\frac{{A{G_1}}}{{AI}} = \frac{2}{3} \Rightarrow \frac{{A{G_1}}}{{AC'}} = \frac{1}{3};\frac{{C'{G_2}}}{{C'I}} = \frac{2}{3} \Rightarrow \frac{{C'{G_2}}}{{AC'}} = \frac{1}{3}\).

Do vậy \(A{G_1} = {G_1}{G_2} = {G_2}C' = \frac{1}{3}AC'\).

Vậy \({G_1},{G_2}\) cùng thuộc \(AC'\) đồng thời chia \(AC'\) thành ba phần bằng nhau.

Câu 4

A. \(OM//\left( {SCD} \right)\).   

B. \(OM//\left( {SAC} \right)\). 
C. \(OM//\left( {SBD} \right)\). 
D. \(OM//\left( {SAB} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(MN//\left( {SCD} \right)\).

Đúng
Sai

b) Nếu \(E\) là giao điểm của \(\left( {MNG} \right)\) và \(BC\) thì tứ giác \(MNEF\) là hình thang đáy lớn là \(EF\) và \(EF = \frac{3}{2}MN\)

Đúng
Sai

c) \(SC\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).

Đúng
Sai
d) \(MG//SC\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đường thẳng \(AM\) nằm trong mặt phẳng \(\left( {SAC} \right)\).

Đúng
Sai

b) Giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) là đường thẳng \(SO\).

Đúng
Sai

c) Giao điểm của đường thẳng \(AM\) và mặt phẳng \(SBD\) là giao điểm của \(AM\) và \(SO\).

Đúng
Sai
d) Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa đường thẳng \(AM\) và song song với đường thẳng \(BD\). Mặt phẳng \(\left( \alpha  \right)\) cắt \(SB\) tại \(P\). Khi đó \(\frac{{SP}}{{SB}} = \frac{2}{3}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP