B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = f\left( x \right) = 2{e^{ - x}}\), trục hoành, trục tung và đường thẳng \(x = 1\).
B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = f\left( x \right) = 2{e^{ - x}}\), trục hoành, trục tung và đường thẳng \(x = 1\).
Quảng cáo
Trả lời:
a) S, b) S, c) Đ, d) S
a) Vì \({\left( {2{e^{ - x}} + C} \right)^\prime } = - 2{e^{ - x}} \ne f\left( x \right)\).
b) \(S = \int\limits_0^1 {\left| {f\left( x \right)} \right|dx} \).
c) \(S = \int\limits_0^1 {\left| {2{e^{ - x}}} \right|dx} \)\( = \int\limits_0^1 {2{e^{ - x}}dx} \)\( = \left. { - 2{e^{ - x}}} \right|_0^1 = - 2{e^{ - 1}} + 2 = 2 - \frac{2}{e}\).
d) Ta có \(V = \pi \int\limits_0^1 {{{\left( {2{e^{ - x}}} \right)}^2}dx} \)\( = 4\pi \int\limits_0^1 {{e^{ - 2x}}dx} \)\( = \left. { - 2\pi {e^{ - 2x}}} \right|_0^1 = - 2\pi {e^{ - 2}} + 2\pi \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích miếng tôn hình tròn là \({S_1} = \pi {R^2} = 25\pi \left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chọn hệ trục tọa độ \(Oxy\) như hình vẽ

Phương trình của đường tròn tâm \(O\), bán kính bằng 5 là \({x^2} + {y^2} = 25\).
Phương trình nửa phía trên trục hoành của đường tròn là \(y = \sqrt {25 - {x^2}} \).
Có \(AB = 6 \Rightarrow {y_A} = 3 \Rightarrow {x_A} = 4\).
Vậy diện tích phần tấm trống là \({S_2} = 2\int\limits_4^5 {\sqrt {25 - {x^2}} } dx\).
Diện tích phần tấm tôn trang trí là \(S = {S_1} - {S_2} = 25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} \).
Vậy số tiền cần trả là \(100.\left( {25\pi - 2\int\limits_4^5 {\sqrt {25 - {x^2}} dx} } \right) \approx 7445\) nghìn đồng.
Câu 2
Lời giải
a) S, b) Đ, c) Đ, d) Đ
a) Mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến \(\overrightarrow n = \left( {2;1; - 2} \right)\).
Thay tọa độ điểm \(A\) vào phương trình mặt phẳng \(\left( P \right)\) ta thấy không thỏa mãn. Do đó \(A \notin \left( P \right)\).
b) Ta có \(d\left( {A,\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) + 0 - 2.2} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = 2\).
c) Mặt phẳng \(\left( Q \right)\) song song với mặt phẳng \(\left( P \right)\) có dạng \(2x + y - 2z + d = 0\left( {d \ne 0} \right)\).
Vì \(\left( Q \right)\) đi qua \(A\left( { - 1;0;2} \right)\) nên \(2.\left( { - 1} \right) + 0 - 2.2 + d = 0 \Leftrightarrow d = 6\)(thỏa mãn).
Vậy \(\left( Q \right):2x + y - 2z + 6 = 0\).
d) Có \(\overrightarrow {OA} = \left( { - 1;0;2} \right),\overrightarrow {{n_P}} = \left( {2;1; - 2} \right)\), \(\left[ {\overrightarrow {OA} ,\overrightarrow {{n_P}} } \right] = \left( { - 2;2; - 1} \right) = - \left( {2; - 2;1} \right)\).
Vậy mặt phẳng đi qua gốc tọa độ O, điểm \(A\) và vuông góc \(\left( P \right)\) có một vectơ pháp tuyến là \(\left( {2; - 2;1} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
