Câu hỏi:

09/12/2025 56 Lưu

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {1;5} \right]\). Giả sử \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {1;5} \right]\), khi đó tích phân xác định trên đoạn \(\left[ {1;5} \right]\) của hàm số \(f\left( x \right)\) bằng    

A. \(F\left( 5 \right) - F\left( 1 \right)\). 
B. \(F\left( 5 \right).F\left( 1 \right)\).    
C. \(F\left( 5 \right) + F\left( 1 \right)\).  
D. \(F\left( 1 \right) - F\left( 5 \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(\int\limits_1^5 {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_1^5 = F\left( 5 \right) - F\left( 1 \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 8,5

Ta có \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]dx} \)\( = \int\limits_{ - 1}^2 {xdx} + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \)

\( = \left. {\frac{{{x^2}}}{2}} \right|_{ - 1}^2 + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \)\( = \frac{3}{2} + 2.2 - 3.\left( { - 1} \right) = \frac{{17}}{2} = 8,5\).

Câu 2

A. \(\pi \int\limits_0^1 {{e^x}dx} \).     
B. \(\int\limits_0^1 {{e^x}dx} \).               
C. \(\pi \int\limits_0^1 {{e^{2x}}dx} \).    
D. \(\int\limits_0^1 {{e^{2x}}dx} \).

Lời giải

Đáp án đúng là: C

\(V = \pi \int\limits_0^1 {{e^{2x}}dx} \).

Câu 6

a) Phương trình mặt phẳng \(\left( P \right)\)\(3x - 2y + 5z - 28 = 0\).
Đúng
Sai
b) \(\left( P \right)\) song song với mặt phẳng \(\left( Q \right):2x + 11y + 8z - 5 = 0\).
Đúng
Sai
c) \(\left( P \right)\) vuông góc với mặt phẳng \(\left( R \right):x + 2y + z + 3 = 0\).
Đúng
Sai
d) Khoảng cách từ điểm \(B\left( {1;1; - 1} \right)\) đến mặt phẳng \(\left( P \right)\) là 5.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP