Câu hỏi:

10/12/2025 21 Lưu

Trên giá sách có các quyển vở không nhãn xếp cạnh nhau với bề ngoài, khối lượng và kích thước giống hệt nhau, trong đó có 5 quyển ghi môn Toán, 5 quyển ghi môn Ngữ Văn và 3 quyển ghi môn Tiếng Anh. Lấy ngẫu nhiên hai quyển vở. Xét các biến cố:

\(M\) : "Trong hai quyển vở được lấy, chỉ có 1 quyển ghi môn Tiếng Anh";

\(N\) : "Trong hai quyển vở được lấy, chỉ có 1 quyển ghi môn Ngữ Văn".

Khi đó, biến cố giao của hai biến cố \(M\) và \(N\) là:

A. "Hai quyển vở được lấy ghi cùng một môn".

B. "Hai quyển vở được lấy ghi hai môn khác nhau".

C. "Trong hai quyển vở được lấy, một quyển ghi môn Tiếng Anh và một quyển ghi môn Ngữ Văn".

D. "Hai quyển vở được lấy có ít nhất một quyển ghi môn Tiếng Anh”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]

Đúng
Sai

b) Với \(a =  - 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai

c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai
d) Với \(a = {m_0}\) thì hàm số có đạo hàm tại \[x = 1\], khi đó : \(\mathop {\lim }\limits_{x \to {m_0}} \left( {{x^2} + 2x - 3} \right) = 5\)
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

Để hàm số có đạo hàm tại \[x = 1\] thì trước hết \[f(x)\] phải liên tục tại \[x = 1\]

Hay \[\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2 = f(1) = a\].

Khi đó, ta có:\[\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} = 1\].

Vậy \[a = 2\] là giá trị cần tìm.

Câu 2

a) Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại điểm có hoành độ là \(x = {\log _3}2\).

Đúng
Sai

b) Bất phương trình \(f\left( x \right) \ge  - 1\) có nghiệm duy nhất.

Đúng
Sai

c) Bất phương trình \(f\left( x \right) \ge 0\) có tập nghiệm là: \(\left( { - \infty ;{{\log }_3}2} \right)\).

Đúng
Sai
d) Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại \(2\) điểm phân biệt.
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Sai

d) Sai

a: \({3^{2x}} - {2.3^x} = 0 \Leftrightarrow {3^x} - 2 = 0 \Leftrightarrow x = {\log _3}2\) nên a đúng.

b Bất phương trình \(f\left( x \right) \ge  - 1\) có nghiệm duy nhất: b sai.

c Bất phương trình \(f\left( x \right) \ge 0\) có tập nghiệm là: \(\left( {{{\log }_3}2; + \infty } \right)\) nên c sai.

d Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại \(2\) điểm phân biệt: d sai.

Câu 4

A. \(D = \left( {0;\,4} \right)\).  

B. \(D = \mathbb{R}\). 

C. \(D = \left( { - \infty ;\,0} \right) \cup \left( {4;\, + \infty } \right)\) .
D.\(D = \left( {0;\, + \infty } \right)\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(45^\circ \).  

B. \(60^\circ \).  
C. \(30^\circ \).  
D. \(90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P(X) = \frac{5}{{18}}\). 

B. \(P(X) = \frac{5}{8}\).
C. \(P(X) = \frac{7}{{18}}\). 
D. \(P(X) = \frac{7}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Một trường học có tỉ lệ học sinh thích bóng đá là \(45\% \), thích bóng rổ là \(60\% \) và thích cả hai môn này là \(30\% \). Tính xác suất để gặp một học sinh trong trường mà học sinh đó không thích bóng đá hoặc bóng rổ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP