Câu hỏi:

10/12/2025 5 Lưu

Cho chuyển động thẳng xác định bởi phương trình \(S =  - {t^3} + 3{t^2} + 9t\), trong đó \(t\) tính bằng giây và \(S\) tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.

A. \(12\,{\rm{m/ s}}\).  

B. \(0\,{\rm{m/ s}}\).    
C. \(11\,{\rm{m/ s}}\). 
D. \(6\,{\rm{m/ s}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vận tốc của chuyển động chính là đạo hàm cấp một của quãng đường: \(v = S' =  - 3{t^2} + 6t + 9\)

Gia tốc của chuyển động chính là đạo hàm cấp hai của quãng đường: \(a = S'' =  - 6t + 6\)

Gia tốc triệt tiêu khi \(S'' = 0\) \( \Leftrightarrow t = 1\).

Khi đó vận tốc của chuyển động là \(S'\left( 1 \right) = 12\,{\rm{m/}}\,{\rm{s}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Đúng

c) Sai

d) Đúng

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, góc ABC = 60^0, SO vuông góc (ABCD) và SO =3a/4, đặt x = d(O,(SAB)), \(y = d (D,(SAB)), z = d(CD,SA). Các mệnh đề sau đúng hay sai? (ảnh 1)

Tam giác \(ABC\) đều cạnh \(a\) nên đường cao \(CM = \frac{{a\sqrt 3 }}{2}\). Gọi \(N\) là trung điểm của \(AM\) \( \Rightarrow ON \bot AB;ON = \frac{{a\sqrt 3 }}{4}\).

Kẻ \(OH \bot SN\)\( \Rightarrow d\left( {O,\left( {SAB} \right)} \right) = OH\).

\[\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{N^2}}}\]; \[ON = \frac{1}{2}CM = \frac{{a\sqrt 3 }}{4}\]; \[SO = \frac{{3a}}{4} \Rightarrow OH = \frac{{3a}}{8}\].

\(x = d\left( {O,\left( {SAB} \right)} \right) = \frac{{3a}}{8}\), \(y = d\left( {D,\left( {SAB} \right)} \right) = 2.d\left( {O,\left( {SAB} \right)} \right) = 2x\), \(z = d\left( {CD,SA} \right)\)\( = d\left( {D,\left( {SAB} \right)} \right) = 2x\).

Vậy \(x + y + z = 5x = \frac{{15a}}{8}\).

Lời giải

Trả lời: \( \approx {51,14^^\circ }\)

Lời giải

Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)\), kẻ \({A^\prime }H \bot {B^\prime }{D^\prime }\) tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{B^\prime }{D^\prime } \bot {A^\prime }H}\\{{B^\prime }{D^\prime } \bot A{A^\prime }\left( {{\rm{do }}A{A^\prime } \bot \left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)} \right)}\end{array} \Rightarrow {B^\prime }{D^\prime } \bot \left( {A{A^\prime }H} \right) \Rightarrow {B^\prime }{D^\prime } \bot AH} \right.\).

Do đó \(\widehat {AH{A^\prime }}\) là góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\).

Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng 8,2cm và đáy của nó có hai kích thước là 8,5cm ;10,5cm (xem hình vẽ sau). Tìm góc phẳng nhị diện [A,B'D',A'] (tính theo độ, làm tròn kết quả đến hàng phần chục).  (ảnh 2)

Tam giác \({A^\prime }{B^\prime }{D^\prime }\) vuông tại \({A^\prime }\) có đường cao \({A^\prime }H\) nên

\(\frac{1}{{{A^\prime }{H^2}}} = \frac{1}{{{A^\prime }{B^{\prime 2}}}} + \frac{1}{{{A^\prime }{D^{\prime 2}}}} \Rightarrow {A^\prime }H = \frac{{{A^\prime }{B^\prime } \cdot {A^\prime }{D^\prime }}}{{\sqrt {{A^\prime }{B^{\prime 2}} + {A^\prime }{D^{\prime 2}}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)

Tam giác \(AH{A^\prime }\) vuông tại \({A^\prime }\) có:

\(\tan \widehat {AH{A^\prime }} = \frac{{A{A^\prime }}}{{{A^\prime }H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AH{A^\prime }} \approx {51,14^^\circ }\)

Câu 3

A. \(P(X) = \frac{5}{{18}}\). 

B. \(P(X) = \frac{5}{8}\).
C. \(P(X) = \frac{7}{{18}}\). 
D. \(P(X) = \frac{7}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{2x}}{{{x^2} - 1}}\).

B. \(\frac{{ - 2x}}{{{x^2} - 1}}\).  
C. \(\frac{1}{{{x^2} - 1}}\). 
D. \(\frac{x}{{1 - {x^2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phần 2. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai

Một trường học có tỉ lệ học sinh nam và nữ là \(5:3\). Trong đó, tỉ lệ số học sinh nam thuận tay trái là \(11\% \), tỉ lệ số học sinh nữ thuận tay trái là \(9\% \). Khi đó:

a) Xác suất để chọn được 1 học sinh nam ở trường không thuận tay trái là: \(\frac{{273}}{{800}}{\rm{. }}\)

Đúng
Sai

b) Xác suất để chọn được 1 học sinh nữ ở trường không thuận tay trái là: \(\frac{{89}}{{160}}{\rm{. }}\)

Đúng
Sai

c) Xác suất để chọn được 1 học sinh nam, 1 học sinh nữ ở trường thuận tay trái lần lượt là:

\(\frac{{11}}{{160}}{\rm{ v\`a  }}\frac{{27}}{{800}}{\rm{. }}\)

Đúng
Sai
d) Xác suất để chọn ngẫu nhiên 5 học sinh ở trường trong đó có đúng 1 học sinh nam và 1 học sinh nữ thuận tay trái là: \[\frac{{297}}{{128000}}\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP