Câu hỏi:

11/12/2025 81 Lưu

Một lớp học có 40 học sinh trong đó có 25 học sinh thích môn Toán, 20 học sinh thích môn Ngữ văn và 12 học sinh thích cả hai môn Ngữ văn và Toán. Tính xác suất để chọn được một học sinh thích môn Ngữ văn mà không thích môn Toán.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(\frac{8}{{40}}\)

Xác suất để chọn được một học sinh thích môn Ngữ văn mà không thích môn Toán: \(\frac{8}{{40}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).  

Đúng
Sai

b) \({\log _{ab}}c > 0\).  

Đúng
Sai

c) \({\log _a}\frac{b}{c} > 0\).

Đúng
Sai
d) \({\log _b}\frac{a}{c} < 0\).
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

Từ hình vẽ ta có: *) \[a > 1\]. Vì hàm \[y = {\log _a}x\] đồng biến: Tính từ trái qua phải đồ thị có dạng đi lên.

*) Lấy đối xứng đồ thị hàm số \[y =  - {b^x}\] qua trục \[Ox\]ta được đồ thị hàm số \[y = {b^x}\]

                               là hàm đồng biến, nên \[\,b > 1\].

*) \[0 < c < 1.\]Vì hàm \[y = {c^x}\] nghịch biến: Tính từ trái qua phải đt có dạng đi xuống.

Do đó:

\[\left. \begin{array}{l}a + b > 2\\0 < c < 1\end{array} \right\} \Rightarrow {\log _c}\left( {a + b} \right) < {\log _c}2 \Rightarrow \]Đáp án a sai.

\[\left. \begin{array}{l}0 < c < 1\\ab > 1\end{array} \right\} \Rightarrow {\log _{ab}}c < {\log _{ab}}1 = 0 \Rightarrow \]Đáp án b sai.

\[\left. \begin{array}{l}\frac{b}{c} > 1\\a > 1\end{array} \right\} \Rightarrow {\log _a}\frac{b}{c} > {\log _a}1 = 0 \Rightarrow \]Đáp án c đúng.

\[\left. \begin{array}{l}\frac{a}{c} > 1\\b > 1\end{array} \right\} \Rightarrow {\log _b}\frac{a}{c} > {\log _b}1 = 0 \Rightarrow \]Đáp án d sai.

Câu 2

Một chất điểm chuyển động theo phương trình \(S =  - {t^3} + 3{t^2} - 2\), trong đó t tính bằng giây và S tính theo mét. Vận tốc lớn nhất của chuyển động chất điểm đó là

Lời giải

Trả lời: 3 m/s.                

Lời giải

Ta có: \(v = S' =  - 3{t^2} + 6t\).

\({v_{\max }} \Leftrightarrow t = \frac{{ - b}}{{2a}} = 1\left( s \right)\)

\( \Rightarrow {v_{\max }} = v\left( 1 \right) = 3m/s\).

Câu 3

A. \(mp\left( {AA'C'C} \right) \bot mp\left( {ABCD} \right)\). 

B. \(mp\left( {ABB'A'} \right) \bot mp\left( {BDD'B'} \right).\).

C. \(mp\left( {ABB'A'} \right) \bot mp\left( {A'B'C'D'} \right).\).        
D. \(mp\left( {ACC'A'} \right) \bot mp\left( {BB'D'D} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{12}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).   

B. \(\frac{{24}}{5}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).  
C. \(\frac{{24}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\). 
D. \(24{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP