Câu hỏi:

16/12/2025 313 Lưu

Cho x, y là các số thực dương thỏa mãn bất đẳng thức sau đây \(\log \frac{{x + 1}}{{3y + 1}} \le 9{y^4} + 6{y^3} - {x^2}{y^2} - 2{y^2}x\). Biết \(y \le 1000\). Hỏi có bao nhiêu cặp số nguyên dương \((x;y)\) thỏa mãn bất đẳng thức trên?

 

A. 1501100        
B. 1501300      
C. 1501400            
D. 1501500

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

 Dùng hàm đặc trưng

Lời giải

Ta có: \(\log \frac{{x + 1}}{{3y + 1}} \le 9{y^4} + 6{y^3} - {x^2}{y^2} - 2{y^2}x\)

\( \Leftrightarrow \log \frac{{xy + y}}{{3{y^2} + y}} \le \left( {9{y^4} + 6{y^3} + {y^2}} \right) - \left( {{x^2}{y^2} + 2xy.y + {y^2}} \right)\)

\( \Leftrightarrow \log (xy + y) - \log \left( {3{y^2} + y} \right) \le {\left( {3{y^2} + y} \right)^2} - {(xy + y)^2}\)

\( \Leftrightarrow \log (xy + y) + {(xy + y)^2} \le \log \left( {3{y^2} + y} \right) + {\left( {3{y^2} + y} \right)^2}\)

Xét hàm : \(f(t) = \log t + {t^2}\) với \(t \in (0; + \infty )\)

\({f^\prime }(t) = \frac{1}{{t\ln 10}} + 2t > 0\,\,\forall t \in (0; + \infty ) \Rightarrow \)Hàm số đồng biến trên khoảng \((0; + \infty )\)

\( \Rightarrow f(xy + y) \le f\left( {3{y^2} + y} \right) \Leftrightarrow xy + y \le 3{y^2} + y \Leftrightarrow x \le 3y\)

\(y \le 1000\) nên ta có các trường hợp sau:

\(y = 1 \Rightarrow x \in \{ 1;2;3\} \)

\(y = 2 \Rightarrow x \in \{ 1;2;3;4;5;6\} \)

………

\(y = 1000 \Rightarrow x \in \{ 1;2;3; \ldots ;3000\} \)

Vậy số cặp số thỏa mãn yêu cầu bài toán là: \(3 + 6 + 9 + \ldots + 3000 = 1501500\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Sử dụng công thức tính tính thể tích: V = hS

Xác định các thông số trạng thái.

Áp dụng công thức định luật Boyle.

Lời giải

Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)

Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)

Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)

\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)

\( \Rightarrow \) pitong dịch sang trái 10 cm.

Lời giải

Đáp án đúng là B

Phương pháp giải

Sử dụng tương giao đồ thị

Lời giải

Xét hàm số \(y = f\left( {{x^2} - 3x + m} \right)\)

\({y^\prime } = (2x - 3).{f^\prime }\left( {{x^2} - 3x + m} \right)\)

\({y^\prime } = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 3 = 0}\\{{f^\prime }\left( {{x^2} - 3x + m} \right) = 0}\end{array}} \right.\)

Để hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có nhiều cực trị nhất thì phương trình \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0\) có nhiều nghiệm bội lẻ khác \(\frac{3}{2}\) nhất.

Xét phương trình: \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\)

\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\)

Xét hàm số : \(h(x) = {x^2} - 3x\)

\({h^\prime }(x) = 2x - 3,{h^\prime } = 0 \Rightarrow x = \frac{3}{2}\)

Bảng biến thiên hàm số \(h(x) = {x^2} - 3x\)

Cho hàm số \(y = f(x)\) có đạo hàm trên R là f^\prime }(x) = (x + 3)(x - 4) (ảnh 1)

Để \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\) có nhiều nghiệm bội lẻ nhất \( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\) có nhiều nghiệm bội lẻ nhất

Số nghiệm của hai phương trình này là số giao điểm của đồ thị hàm số \(h(x) = {x^2} - 3x\) và các đường thẳng \(y = - m - 3\)\(y = 4 - m\)

Dựa vào bảng biến thiên của hàm số \(h(x) = {x^2} - 3x \Rightarrow \left[ {\begin{array}{*{20}{l}}{ - m - 3 > \frac{{ - 9}}{4}}\\{4 - m > \frac{{ - 9}}{4}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < \frac{{ - 3}}{4}}\\{m < \frac{{25}}{4}}\end{array}} \right.} \right.\)

\(m \in [ - 10;5]\), kết hợp các điều kiện \( \Rightarrow m \in \left( {\frac{{ - 3}}{4};5} \right],m \in \mathbb{Z} \Rightarrow m \in \{ 0;1;2;3;4;5\} \)

Vậy tổng các giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán là: 15

Câu 3

A. \(\frac{1}{2}\)    
B. \(\frac{1}{4}\) 
C. \(\frac{1}{3}\)            
D. \(\frac{1}{5}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP