Câu hỏi:

16/12/2025 513 Lưu

Cho x, y là các số thực dương thỏa mãn bất đẳng thức sau đây \(\log \frac{{x + 1}}{{3y + 1}} \le 9{y^4} + 6{y^3} - {x^2}{y^2} - 2{y^2}x\). Biết \(y \le 1000\). Hỏi có bao nhiêu cặp số nguyên dương \((x;y)\) thỏa mãn bất đẳng thức trên?

 

A. 1501100        
B. 1501300      
C. 1501400            
D. 1501500

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

 Dùng hàm đặc trưng

Lời giải

Ta có: \(\log \frac{{x + 1}}{{3y + 1}} \le 9{y^4} + 6{y^3} - {x^2}{y^2} - 2{y^2}x\)

\( \Leftrightarrow \log \frac{{xy + y}}{{3{y^2} + y}} \le \left( {9{y^4} + 6{y^3} + {y^2}} \right) - \left( {{x^2}{y^2} + 2xy.y + {y^2}} \right)\)

\( \Leftrightarrow \log (xy + y) - \log \left( {3{y^2} + y} \right) \le {\left( {3{y^2} + y} \right)^2} - {(xy + y)^2}\)

\( \Leftrightarrow \log (xy + y) + {(xy + y)^2} \le \log \left( {3{y^2} + y} \right) + {\left( {3{y^2} + y} \right)^2}\)

Xét hàm : \(f(t) = \log t + {t^2}\) với \(t \in (0; + \infty )\)

\({f^\prime }(t) = \frac{1}{{t\ln 10}} + 2t > 0\,\,\forall t \in (0; + \infty ) \Rightarrow \)Hàm số đồng biến trên khoảng \((0; + \infty )\)

\( \Rightarrow f(xy + y) \le f\left( {3{y^2} + y} \right) \Leftrightarrow xy + y \le 3{y^2} + y \Leftrightarrow x \le 3y\)

\(y \le 1000\) nên ta có các trường hợp sau:

\(y = 1 \Rightarrow x \in \{ 1;2;3\} \)

\(y = 2 \Rightarrow x \in \{ 1;2;3;4;5;6\} \)

………

\(y = 1000 \Rightarrow x \in \{ 1;2;3; \ldots ;3000\} \)

Vậy số cặp số thỏa mãn yêu cầu bài toán là: \(3 + 6 + 9 + \ldots + 3000 = 1501500\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Sử dụng công thức tính tính thể tích: V = hS

Xác định các thông số trạng thái.

Áp dụng công thức định luật Boyle.

Lời giải

Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)

Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)

Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)

\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)

\( \Rightarrow \) pitong dịch sang trái 10 cm.

Câu 2

A. \(\frac{1}{2}\)    
B. \(\frac{1}{4}\) 
C. \(\frac{1}{3}\)            
D. \(\frac{1}{5}\)

Lời giải

Đáp án đúng là C

Phương pháp giải

Xác suất có điều kiện

Lời giải

\(\Omega = \{ GG;GT;TG,TT\} \)

Số phần tử không gian mẫu: \({n_\Omega } = 4\)

Gọi \(A\) là biến cố : "2 người con đều là gái"

Gọi \(B\) là biến cố : "Có ít nhất một người con là gái"

Số phần tử của biến cố \(A\)\({n_A} = 1\)

Số phần tử của biến cố \(B\)\({n_B} = 3\)

\( \Rightarrow n(A \cap B) = 1\)

\(P(A\mid B) = \frac{{n(A \cap B)}}{{n(B)}} = \frac{1}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP