Có bao nhiêu cặp số nguyên \((x,y)\) thỏa mãn điều kiện \(0 \le y \le 100\) và \({x^6} + 6{x^4}y + 12{x^2}{y^2} - 19{y^3} + 3{x^2} - 3y = 0\)?
Có bao nhiêu cặp số nguyên \((x,y)\) thỏa mãn điều kiện \(0 \le y \le 100\) và \({x^6} + 6{x^4}y + 12{x^2}{y^2} - 19{y^3} + 3{x^2} - 3y = 0\)?
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Sử dụng hàm đặc trưng
Lời giải
\({x^6} + 6{x^4}y + 12{x^2}{y^2} - 19{y^3} + 3{x^2} - 3y = 0\)
\( \Leftrightarrow {x^6} + 6{x^4}y + 12{x^2}{y^2} + 8{y^3} - 27{y^3} + 3{x^2} - 3y = 0\)
\( \Leftrightarrow {x^6} + 6{x^4}y + 12{x^2}{y^2} + 8{y^3} + 3{x^2} + 6y = 27{y^3} + 9y\)
\( \Leftrightarrow {\left( {{x^2} + 2y} \right)^3} + 3\left( {{x^2} + 2y} \right) = {(3y)^3} + 3.3y\,\,(*)\)
Xét hàm số: \(f(t) = {t^3} + 3t\)
Ta có : \({f^\prime }(t) = 3{t^2} + 3 > 0\forall t \in \mathbb{R}\)
\( \Rightarrow f(t)\) là hàm đồng biến trên \(\mathbb{R}\)
Vì vậy \((*) \Leftrightarrow f\left( {{x^2} + 2y} \right) = f(3y) \Leftrightarrow {x^2} + 2y = 3y \Leftrightarrow {x^2} = y\)
Theo giả thiết ta có : \(0 \le y \le 100 \Leftrightarrow 0 \le {x^2} \le 100 \Leftrightarrow - 10 \le x \le 10\)
Vì \(x\) nguyên nên \(x \in \{ - 10; - 9; - 8; \ldots ;8;9;10\} \), với mỗi \(x\) xác định duy nhất giá trị \(y = {x^2}\).
Vậy có 21 cặp \((x;y)\) thỏa mãn bài toán.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là D
Phương pháp giải
Sử dụng công thức tính tính thể tích: V = hS
Xác định các thông số trạng thái.
Áp dụng công thức định luật Boyle.
Lời giải
Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)
Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)
Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)
\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)
\( \Rightarrow \) pitong dịch sang trái 10 cm.
Câu 2
Lời giải
Đáp án đúng là A
Phương pháp giải
Căn cứ vào kiến thức về từ đồng âm, từ nhiều nghĩa.
Nội dung/ Thông điệp
Lời giải
- Từ “đường” trong bài thơ trên là con đường để đi lại, con đường giao thông.
- Từ “đường” trong cụm từ “ngọt như đường” có nghĩa là đường thực phẩm, đường dùng trong nấu ăn, pha chế, có vị ngọt.
- Hai từ “đường” khác biệt hoàn toàn về nghĩa, chỉ có âm giống nhau, đây là hiện tượng từ đồng âm.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


