Có bao nhiêu cặp số nguyên \((x,y)\) thỏa mãn điều kiện \(0 \le y \le 100\) và \({x^6} + 6{x^4}y + 12{x^2}{y^2} - 19{y^3} + 3{x^2} - 3y = 0\)?
Có bao nhiêu cặp số nguyên \((x,y)\) thỏa mãn điều kiện \(0 \le y \le 100\) và \({x^6} + 6{x^4}y + 12{x^2}{y^2} - 19{y^3} + 3{x^2} - 3y = 0\)?
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Sử dụng hàm đặc trưng
Lời giải
\({x^6} + 6{x^4}y + 12{x^2}{y^2} - 19{y^3} + 3{x^2} - 3y = 0\)
\( \Leftrightarrow {x^6} + 6{x^4}y + 12{x^2}{y^2} + 8{y^3} - 27{y^3} + 3{x^2} - 3y = 0\)
\( \Leftrightarrow {x^6} + 6{x^4}y + 12{x^2}{y^2} + 8{y^3} + 3{x^2} + 6y = 27{y^3} + 9y\)
\( \Leftrightarrow {\left( {{x^2} + 2y} \right)^3} + 3\left( {{x^2} + 2y} \right) = {(3y)^3} + 3.3y\,\,(*)\)
Xét hàm số: \(f(t) = {t^3} + 3t\)
Ta có : \({f^\prime }(t) = 3{t^2} + 3 > 0\forall t \in \mathbb{R}\)
\( \Rightarrow f(t)\) là hàm đồng biến trên \(\mathbb{R}\)
Vì vậy \((*) \Leftrightarrow f\left( {{x^2} + 2y} \right) = f(3y) \Leftrightarrow {x^2} + 2y = 3y \Leftrightarrow {x^2} = y\)
Theo giả thiết ta có : \(0 \le y \le 100 \Leftrightarrow 0 \le {x^2} \le 100 \Leftrightarrow - 10 \le x \le 10\)
Vì \(x\) nguyên nên \(x \in \{ - 10; - 9; - 8; \ldots ;8;9;10\} \), với mỗi \(x\) xác định duy nhất giá trị \(y = {x^2}\).
Vậy có 21 cặp \((x;y)\) thỏa mãn bài toán.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là D
Phương pháp giải
Sử dụng công thức tính tính thể tích: V = hS
Xác định các thông số trạng thái.
Áp dụng công thức định luật Boyle.
Lời giải
Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)
Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)
Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)
\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)
\( \Rightarrow \) pitong dịch sang trái 10 cm.
Lời giải
Đáp án đúng là B
Phương pháp giải
Sử dụng tương giao đồ thị
Lời giải
Xét hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có
\({y^\prime } = (2x - 3).{f^\prime }\left( {{x^2} - 3x + m} \right)\)
\({y^\prime } = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 3 = 0}\\{{f^\prime }\left( {{x^2} - 3x + m} \right) = 0}\end{array}} \right.\)
Để hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có nhiều cực trị nhất thì phương trình \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0\) có nhiều nghiệm bội lẻ khác \(\frac{3}{2}\) nhất.
Xét phương trình: \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\)
\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\)
Xét hàm số : \(h(x) = {x^2} - 3x\)
\({h^\prime }(x) = 2x - 3,{h^\prime } = 0 \Rightarrow x = \frac{3}{2}\)
Bảng biến thiên hàm số \(h(x) = {x^2} - 3x\)

Để \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\) có nhiều nghiệm bội lẻ nhất \( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\) có nhiều nghiệm bội lẻ nhất
Số nghiệm của hai phương trình này là số giao điểm của đồ thị hàm số \(h(x) = {x^2} - 3x\) và các đường thẳng \(y = - m - 3\) và \(y = 4 - m\)
Dựa vào bảng biến thiên của hàm số \(h(x) = {x^2} - 3x \Rightarrow \left[ {\begin{array}{*{20}{l}}{ - m - 3 > \frac{{ - 9}}{4}}\\{4 - m > \frac{{ - 9}}{4}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < \frac{{ - 3}}{4}}\\{m < \frac{{25}}{4}}\end{array}} \right.} \right.\)
Mà \(m \in [ - 10;5]\), kết hợp các điều kiện \( \Rightarrow m \in \left( {\frac{{ - 3}}{4};5} \right],m \in \mathbb{Z} \Rightarrow m \in \{ 0;1;2;3;4;5\} \)
Vậy tổng các giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán là: 15
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
