Cho hình chóp S.ABCD đáy là hình vuông cạnh \(a\). Mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD. Tính thể tích khối tứ diện CMNP.
Quảng cáo
Trả lời:
Đáp án đúng là B
Phương pháp giải
Tỉ số thể tích
Lời giải

\(\frac{{{V_{CMNP}}}}{{{V_{CMBD}}}} = \frac{{CN}}{{CB}}.\frac{{CP}}{{CD}} = \frac{1}{4}(*),\,\,\frac{{{V_{CMBD}}}}{{{V_{CSBD}}}} = \frac{{{V_{M.CBD}}}}{{{V_{S.CBD}}}} = \frac{{BM}}{{BS}} = \frac{1}{2}(**)\)
Lấy \((*).(**)\) ta được: \(\frac{{{V_{CMNP}}}}{{{V_{S.BCD}}}} = \frac{1}{8} \Rightarrow {V_{CMNP}} = \frac{1}{8}{V_{S.BCD}}\)
Gọi \(H\) là trung điểm \(AD \Rightarrow SH \bot AD\) và \((SAD) \bot (ABCD)\) nên \(SH \bot (ABCD)\)
\({V_{S.BCD}} = \frac{1}{3}SH.{S_{\Delta BCD}} = \frac{{{a^3}\sqrt 3 }}{{12}} \Rightarrow {V_{CMNP}} = \frac{{{a^3}\sqrt 3 }}{{96}}\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là D
Phương pháp giải
Sử dụng công thức tính tính thể tích: V = hS
Xác định các thông số trạng thái.
Áp dụng công thức định luật Boyle.
Lời giải
Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)
Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)
Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)
\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)
\( \Rightarrow \) pitong dịch sang trái 10 cm.
Câu 2
Lời giải
Đáp án đúng là C
Phương pháp giải
Xác suất có điều kiện
Lời giải
\(\Omega = \{ GG;GT;TG,TT\} \)
Số phần tử không gian mẫu: \({n_\Omega } = 4\)
Gọi \(A\) là biến cố : "2 người con đều là gái"
Gọi \(B\) là biến cố : "Có ít nhất một người con là gái"
Số phần tử của biến cố \(A\) là \({n_A} = 1\)
Số phần tử của biến cố \(B\) là \({n_B} = 3\)
\( \Rightarrow n(A \cap B) = 1\)
\(P(A\mid B) = \frac{{n(A \cap B)}}{{n(B)}} = \frac{1}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
