Câu hỏi:

16/12/2025 680 Lưu

Cho hình chóp S.ABCD đáy là hình vuông cạnh \(a\). Mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD. Tính thể tích khối tứ diện CMNP.

A. \(3{a^3}\sqrt 3 \)   
B. \(\frac{{{a^3}\sqrt 3 }}{{96}}\)
C. \(\frac{{{a^3}\sqrt 2 }}{{96}}\)
D. \({a^3}\sqrt {96} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Tỉ số thể tích

Lời giải

Cho hình chóp S.ABCD đáy là hình vuông cạnh \(a\). Mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy (ảnh 1)

\(\frac{{{V_{CMNP}}}}{{{V_{CMBD}}}} = \frac{{CN}}{{CB}}.\frac{{CP}}{{CD}} = \frac{1}{4}(*),\,\,\frac{{{V_{CMBD}}}}{{{V_{CSBD}}}} = \frac{{{V_{M.CBD}}}}{{{V_{S.CBD}}}} = \frac{{BM}}{{BS}} = \frac{1}{2}(**)\)

Lấy \((*).(**)\) ta được: \(\frac{{{V_{CMNP}}}}{{{V_{S.BCD}}}} = \frac{1}{8} \Rightarrow {V_{CMNP}} = \frac{1}{8}{V_{S.BCD}}\)

Gọi \(H\) là trung điểm \(AD \Rightarrow SH \bot AD\)\((SAD) \bot (ABCD)\) nên \(SH \bot (ABCD)\)

\({V_{S.BCD}} = \frac{1}{3}SH.{S_{\Delta BCD}} = \frac{{{a^3}\sqrt 3 }}{{12}} \Rightarrow {V_{CMNP}} = \frac{{{a^3}\sqrt 3 }}{{96}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Sử dụng công thức tính tính thể tích: V = hS

Xác định các thông số trạng thái.

Áp dụng công thức định luật Boyle.

Lời giải

Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)

Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)

Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)

\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)

\( \Rightarrow \) pitong dịch sang trái 10 cm.

Câu 2

A. \(\frac{1}{2}\)    
B. \(\frac{1}{4}\) 
C. \(\frac{1}{3}\)            
D. \(\frac{1}{5}\)

Lời giải

Đáp án đúng là C

Phương pháp giải

Xác suất có điều kiện

Lời giải

\(\Omega = \{ GG;GT;TG,TT\} \)

Số phần tử không gian mẫu: \({n_\Omega } = 4\)

Gọi \(A\) là biến cố : "2 người con đều là gái"

Gọi \(B\) là biến cố : "Có ít nhất một người con là gái"

Số phần tử của biến cố \(A\)\({n_A} = 1\)

Số phần tử của biến cố \(B\)\({n_B} = 3\)

\( \Rightarrow n(A \cap B) = 1\)

\(P(A\mid B) = \frac{{n(A \cap B)}}{{n(B)}} = \frac{1}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP