Câu hỏi:

16/12/2025 62 Lưu

Tìm tất cả các giá trị thực của tham số \(m\) sao cho hàm số \(y = \frac{1}{3}{x^3} - \frac{1}{2}m{x^2} + 2mx - 3m + 4\) nghịch biến trên đoạn có độ dài là 3?

A. \(m \in \{ - 1;9\} \)
B. \(m = - 1\)   
C. \(m = 9\)   
D. \(m \in \{ - 9;1\} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Ứng dụng hệ thức Viet, quy tắc xét dấu tam thức bậc 2

Lời giải

Tập xác định : \(D = R\)

Ta có: \({y^\prime } = {x^2} - mx + 2m\)

\(a = 1 > 0\) nên hàm số đã cho nghịch biến trên 1 đoạn khi và chỉ khi phương trình \({y^\prime } = 0\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0\)

\(\Delta = {m^2} - 8m > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < 0}\\{m > 8}\end{array}} \right.\)

Gọi \({x_1},{x_2}\) là nghiệm của phương trình \({y^\prime } = 0\), theo định lí Viet ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = m}\\{{x_1}.{x_2} = 2m}\end{array}} \right.\)

Hàm số đã cho nghịch biến trên đoạn có độ dài là 3

\(\begin{array}{l} \Rightarrow \left| {{x_1} - {x_2}} \right| = 3 \Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2} = 9 \Leftrightarrow x_1^2 + {x_2}^2 - 2{x_1}{x_2} = 9\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 9\\ \Rightarrow {m^2} - 8m = 9 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = - 1}\\{m = 9}\end{array}} \right.\end{array}\)

Kết hợp với điều kiện nghiệm ta thấy cả hai giá trị của \(m\) đều thỏa mãn yêu cầu bài toán

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Sử dụng công thức tính tính thể tích: V = hS

Xác định các thông số trạng thái.

Áp dụng công thức định luật Boyle.

Lời giải

Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)

Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)

Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)

\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)

\( \Rightarrow \) pitong dịch sang trái 10 cm.

Lời giải

Đáp án đúng là B

Phương pháp giải

Sử dụng tương giao đồ thị

Lời giải

Xét hàm số \(y = f\left( {{x^2} - 3x + m} \right)\)

\({y^\prime } = (2x - 3).{f^\prime }\left( {{x^2} - 3x + m} \right)\)

\({y^\prime } = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 3 = 0}\\{{f^\prime }\left( {{x^2} - 3x + m} \right) = 0}\end{array}} \right.\)

Để hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có nhiều cực trị nhất thì phương trình \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0\) có nhiều nghiệm bội lẻ khác \(\frac{3}{2}\) nhất.

Xét phương trình: \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\)

\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\)

Xét hàm số : \(h(x) = {x^2} - 3x\)

\({h^\prime }(x) = 2x - 3,{h^\prime } = 0 \Rightarrow x = \frac{3}{2}\)

Bảng biến thiên hàm số \(h(x) = {x^2} - 3x\)

Cho hàm số \(y = f(x)\) có đạo hàm trên R là f^\prime }(x) = (x + 3)(x - 4) (ảnh 1)

Để \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\) có nhiều nghiệm bội lẻ nhất \( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\) có nhiều nghiệm bội lẻ nhất

Số nghiệm của hai phương trình này là số giao điểm của đồ thị hàm số \(h(x) = {x^2} - 3x\) và các đường thẳng \(y = - m - 3\)\(y = 4 - m\)

Dựa vào bảng biến thiên của hàm số \(h(x) = {x^2} - 3x \Rightarrow \left[ {\begin{array}{*{20}{l}}{ - m - 3 > \frac{{ - 9}}{4}}\\{4 - m > \frac{{ - 9}}{4}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < \frac{{ - 3}}{4}}\\{m < \frac{{25}}{4}}\end{array}} \right.} \right.\)

\(m \in [ - 10;5]\), kết hợp các điều kiện \( \Rightarrow m \in \left( {\frac{{ - 3}}{4};5} \right],m \in \mathbb{Z} \Rightarrow m \in \{ 0;1;2;3;4;5\} \)

Vậy tổng các giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán là: 15

Câu 3

A. \(\frac{1}{2}\)    
B. \(\frac{1}{4}\) 
C. \(\frac{1}{3}\)            
D. \(\frac{1}{5}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP