Câu hỏi:

16/12/2025 49 Lưu

Cho hàm số \(y = \frac{{x + 1}}{{1 - x}}\). Khẳng định nào sau đây là khẳng định đúng?

A. Hàm số nghịch biến trên khoảng \(( - \infty ;1) \cup (1; + \infty )\)
B. Hàm số đồng biến trên khoảng \(( - \infty ;1) \cup (1; + \infty )\)
C. Hàm số nghịch biến trên các khoảng \(( - \infty ;1),(1; + \infty )\)
D. Hàm số đồng biến trên các khoảng \(( - \infty ;1),(1; + \infty )\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là D

Phương pháp giải

Xét dấu \({y^\prime }\) để suy ra tính đơn điệu của hàm số

Lời giải

Tập xác định: \(D = ( - \infty ;1) \cup (1; + \infty )\)

Ta có : \({y^\prime } = \frac{2}{{{{(1 - x)}^2}}} > 0\,\,\forall x \in D\)

\( \Rightarrow \) Hàm số đồng biến trên các khoảng xác định

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Phương pháp giải

Sử dụng công thức tính tính thể tích: V = hS

Xác định các thông số trạng thái.

Áp dụng công thức định luật Boyle.

Lời giải

Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)

Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)

Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)

\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)

\( \Rightarrow \) pitong dịch sang trái 10 cm.

Câu 2

A. \(\frac{1}{2}\)    
B. \(\frac{1}{4}\) 
C. \(\frac{1}{3}\)            
D. \(\frac{1}{5}\)

Lời giải

Đáp án đúng là C

Phương pháp giải

Xác suất có điều kiện

Lời giải

\(\Omega = \{ GG;GT;TG,TT\} \)

Số phần tử không gian mẫu: \({n_\Omega } = 4\)

Gọi \(A\) là biến cố : "2 người con đều là gái"

Gọi \(B\) là biến cố : "Có ít nhất một người con là gái"

Số phần tử của biến cố \(A\)\({n_A} = 1\)

Số phần tử của biến cố \(B\)\({n_B} = 3\)

\( \Rightarrow n(A \cap B) = 1\)

\(P(A\mid B) = \frac{{n(A \cap B)}}{{n(B)}} = \frac{1}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP