Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn
. (nhập đáp án vào ô trống).
Đáp án: __ .
Quảng cáo
Trả lời:
Đáp án đúng là "2"
Phương pháp giải
Đặt ẩn và giải phương trình.
Lời giải
Đặt \(t = {\log _3}(x + y) = {\log _4}\left( {{x^2} + {y^2}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x + y = {3^t}}\\{{x^2} + {y^2} = {4^t}}\end{array}} \right.\) (1)
Áp dụng bất đẳng thức Cauchy, ta có:
\({9^t} = {(x + y)^2} \le 2\left( {{x^2} + {y^2}} \right) = {4^t} \Rightarrow {\left( {\frac{9}{4}} \right)^t} \le 2 \Rightarrow t \le {\log _{\frac{9}{4}}}2.\)
Khi đó: \({x^2} + {y^2} = {4^t} \Rightarrow {x^2} \le {4^t} \le {4^{{{\log }_{\frac{9}{4}}}2}} \approx 1,89 \Rightarrow x \in \{ - 1;0;1\} \).
Trường hợp \(1:x = 0 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = {3^t}}\\{{y^2} = {4^t}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{t = 0}\\{y = 1}\end{array}} \right.} \right.\).
Trường hợp 2: \(x = 1 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = {3^t} - 1}\\{{y^2} = {4^t} - 1}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{t = 0}\\{y = 0}\end{array}} \right.} \right.\).
Trường hợp 3: \(x = - 1 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{y = {3^t} + 1}\\{{y^2} + 1 = {4^t} \ge 1}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{t \ge 0}\\{y = {3^t} + 1}\end{array} \Rightarrow {x^2} + {y^2} \ge 5} \right.} \right.\) mâu thuẫn với \({x^2} + {y^2} \le {4^{{{\log }_{\frac{3}{2}}}\sqrt 2 }}\)
Vậy có hai giá trị \(x \in \{ 0;1\} \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là D
Phương pháp giải
Sử dụng công thức tính tính thể tích: V = hS
Xác định các thông số trạng thái.
Áp dụng công thức định luật Boyle.
Lời giải
Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)
Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)
Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)
\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)
\( \Rightarrow \) pitong dịch sang trái 10 cm.
Lời giải
Đáp án đúng là B
Phương pháp giải
Sử dụng tương giao đồ thị
Lời giải
Xét hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có
\({y^\prime } = (2x - 3).{f^\prime }\left( {{x^2} - 3x + m} \right)\)
\({y^\prime } = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 3 = 0}\\{{f^\prime }\left( {{x^2} - 3x + m} \right) = 0}\end{array}} \right.\)
Để hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có nhiều cực trị nhất thì phương trình \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0\) có nhiều nghiệm bội lẻ khác \(\frac{3}{2}\) nhất.
Xét phương trình: \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\)
\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\)
Xét hàm số : \(h(x) = {x^2} - 3x\)
\({h^\prime }(x) = 2x - 3,{h^\prime } = 0 \Rightarrow x = \frac{3}{2}\)
Bảng biến thiên hàm số \(h(x) = {x^2} - 3x\)

Để \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\) có nhiều nghiệm bội lẻ nhất \( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\) có nhiều nghiệm bội lẻ nhất
Số nghiệm của hai phương trình này là số giao điểm của đồ thị hàm số \(h(x) = {x^2} - 3x\) và các đường thẳng \(y = - m - 3\) và \(y = 4 - m\)
Dựa vào bảng biến thiên của hàm số \(h(x) = {x^2} - 3x \Rightarrow \left[ {\begin{array}{*{20}{l}}{ - m - 3 > \frac{{ - 9}}{4}}\\{4 - m > \frac{{ - 9}}{4}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < \frac{{ - 3}}{4}}\\{m < \frac{{25}}{4}}\end{array}} \right.} \right.\)
Mà \(m \in [ - 10;5]\), kết hợp các điều kiện \( \Rightarrow m \in \left( {\frac{{ - 3}}{4};5} \right],m \in \mathbb{Z} \Rightarrow m \in \{ 0;1;2;3;4;5\} \)
Vậy tổng các giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán là: 15
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
