Hai nguồn kết hợp A, B cùng pha, cùng biên độ, cách nhau 40 cm. Khoảng cách giữa hai điểm dao động với biên độ cực đại gần nhau nhất trên đoạn AB là 0,8 cm. Điểm M thuộc miền giao thoa cách nguồn A một đoạn 25cm và cách nguồn B một đoạn 22cm. Dịch chuyển nguồn B từ từ dọc theo phương AB ra xa nguồn B đoạn 10 cm thì số lần điểm M chuyển thành điểm dao động với biên độ cực đại là:
Hai nguồn kết hợp A, B cùng pha, cùng biên độ, cách nhau 40 cm. Khoảng cách giữa hai điểm dao động với biên độ cực đại gần nhau nhất trên đoạn AB là 0,8 cm. Điểm M thuộc miền giao thoa cách nguồn A một đoạn 25cm và cách nguồn B một đoạn 22cm. Dịch chuyển nguồn B từ từ dọc theo phương AB ra xa nguồn B đoạn 10 cm thì số lần điểm M chuyển thành điểm dao động với biên độ cực đại là:
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Xác định bước sóng của sóng.
Sử dụng điều kiện để phần tử dao động cực đại: \({d_1} - {d_2} = k\lambda \)
Lời giải
Khoảng cách giữa hai điểm dao động với biên độ cực đại gần nhau nhất trên đoạn AB là 0,8 cm
\( \Rightarrow \frac{\lambda }{2} = 0,8 \Rightarrow \lambda = 1,6(\;{\rm{cm}})\)
Ta có hình ảnh minh họa:

Từ hình ta có:
\(\cos \beta = \frac{{A{M^2} + {{\left( {A{B_1}} \right)}^2} - {{\left( {M{B_1}} \right)}^2}}}{{2AM.A{B_1}}} = \frac{{{{25}^2} + {{40}^2} - {{22}^2}}}{{2.25.40}} = 0,8705\)
Xét trong tam giác \(AM{B_2}\) ta có:
\(M{B_2} = \sqrt {A{M^2} + {{\left( {A{B_2}} \right)}^2} - 2AM.A{B_2}.\cos \beta } = \sqrt {{{25}^2} + {{50}^5} - 2.25.50.0,8705} = 30,8\,\,({\rm{cm}})\)
Điểm \(M\) thuộc cực đại khi: \({d_{1M}} - {d_{2M}} = k\lambda = 1,6k\)
Mặt khác:
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{\Delta {d_{M - 1}} = AM - M{B_1} = 25 - 22 = 3\;{\rm{cm}}}\\{\Delta {d_{M - 2}} = AM - M{B_2} = 25 - 30,8 = - 5,8\;{\rm{cm}}}\end{array}} \right.\\ \Rightarrow - 5,8 \le 1,6k \le 3\\ \Rightarrow - 3,6 \le k \le 1,8\\ \Rightarrow k = - 3; - 2; - 1;0;1\end{array}\)
Vậy có 5 giá trị của k thỏa mãn hay điểm M sẽ chuyển thành điểm dao động cực đại 5 lần.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là D
Phương pháp giải
Sử dụng công thức tính tính thể tích: V = hS
Xác định các thông số trạng thái.
Áp dụng công thức định luật Boyle.
Lời giải
Xét trạng thái 1: \(\left\{ {\begin{array}{*{20}{l}}{{p_1}}\\{{V_1} = {h_1}S}\end{array}} \right.\)
Xét trạng thái 2: \(\left\{ {\begin{array}{*{20}{l}}{{p_2} = 3{p_1}}\\{{V_2} = {h_2}S}\end{array}} \right.\)
Quá trình đẳng nhiệt diễn ra nên ta có: \({p_1}{V_1} = {p_2}{V_2}\)
\(\begin{array}{l} \Rightarrow {p_1}{h_1}S = 3{p_1}{h_2}S\\ \Rightarrow {h_1} = 2{h_2}\\ \Rightarrow {h_2} = \frac{{{h_1}}}{3} = 5\;{\rm{cm}}\end{array}\)
\( \Rightarrow \) pitong dịch sang trái 10 cm.
Lời giải
Đáp án đúng là B
Phương pháp giải
Sử dụng tương giao đồ thị
Lời giải
Xét hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có
\({y^\prime } = (2x - 3).{f^\prime }\left( {{x^2} - 3x + m} \right)\)
\({y^\prime } = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 3 = 0}\\{{f^\prime }\left( {{x^2} - 3x + m} \right) = 0}\end{array}} \right.\)
Để hàm số \(y = f\left( {{x^2} - 3x + m} \right)\) có nhiều cực trị nhất thì phương trình \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0\) có nhiều nghiệm bội lẻ khác \(\frac{3}{2}\) nhất.
Xét phương trình: \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\)
\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\)
Xét hàm số : \(h(x) = {x^2} - 3x\)
\({h^\prime }(x) = 2x - 3,{h^\prime } = 0 \Rightarrow x = \frac{3}{2}\)
Bảng biến thiên hàm số \(h(x) = {x^2} - 3x\)

Để \({f^\prime }\left( {{x^2} - 3x + m} \right) = 0 \Leftrightarrow \left( {{x^2} - 3x + m + 3} \right)\left( {{x^2} - 3x + m - 4} \right) = 0\) có nhiều nghiệm bội lẻ nhất \( \Rightarrow \left[ {\begin{array}{*{20}{l}}{{x^2} - 3x = - m - 3}\\{{x^2} - 3x = 4 - m}\end{array}} \right.\) có nhiều nghiệm bội lẻ nhất
Số nghiệm của hai phương trình này là số giao điểm của đồ thị hàm số \(h(x) = {x^2} - 3x\) và các đường thẳng \(y = - m - 3\) và \(y = 4 - m\)
Dựa vào bảng biến thiên của hàm số \(h(x) = {x^2} - 3x \Rightarrow \left[ {\begin{array}{*{20}{l}}{ - m - 3 > \frac{{ - 9}}{4}}\\{4 - m > \frac{{ - 9}}{4}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < \frac{{ - 3}}{4}}\\{m < \frac{{25}}{4}}\end{array}} \right.} \right.\)
Mà \(m \in [ - 10;5]\), kết hợp các điều kiện \( \Rightarrow m \in \left( {\frac{{ - 3}}{4};5} \right],m \in \mathbb{Z} \Rightarrow m \in \{ 0;1;2;3;4;5\} \)
Vậy tổng các giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán là: 15
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
