Câu hỏi:

17/12/2025 101 Lưu

Một xưởng sản xuất hai loại sản phẩm là sản phẩm loại I và sản phẩm loại II:

- Mỗi kg sản phẩm loại I cần 2 kg nguyên liệu và 30 giờ, thu lời được 40 nghìn đồng.

- Mỗi kg sản phẩm loại II cần 4 kg nguyên liệu và 15 giờ, thu lời được 30 nghìn đồng.

Xưởng có 200 kg nguyên liệu và 1200 giờ làm việc tối đa. Gọi \(x,y\) lần lượt là số sản phẩm loại I và loại II mà xưởng sản xuất để thu được lợi nhuận lớn nhất. Tính tổng \(x + y\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

60

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + 4y \le 200\\30x + 15y \le 1200\end{array} \right.\)(I).

Lợi nhuận thu được là \(F\left( {x,y} \right) = 40x + 30y\).

Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(F\left( {x,y} \right) = 40x + 30y\) trên miền nghiệm của hệ bất phương trình (I).

Một xưởng sản xuất hai loại sản phẩm là sản phẩm loại I và sản phẩm loại II: (ảnh 1)

Miền nghiệm của bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;50} \right),B\left( {20;40} \right),C\left( {40;0} \right)\).

Khi đó \(F\left( {0,0} \right) = 40 \cdot 0 + 30 \cdot 0 = 0\); \(F\left( {0,50} \right) = 40 \cdot 0 + 30 \cdot 50 = 1500\);

\(F\left( {20,40} \right) = 40 \cdot 20 + 30 \cdot 40 = 2000\); \(F\left( {40,0} \right) = 40 \cdot 40 + 30 \cdot 0 = 1600\).

Lợi nhuận lớn nhất là 2000 nghìn đồng khi sản xuất 20 sản phẩm loại I, 40 sản phẩm loại II.

Suy ra \(x = 20;y = 40\). Do đó \(x + y = 60\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) Miền nghiệm \(D\) của hệ bất phương trình trên là một tứ giác.

Đúng
Sai
d) Giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) = - x + y\) trên miền D xác định bởi hệ trên bằng 1.
Đúng
Sai

Lời giải

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l} - 2 \cdot 1 + 3 \le 2\\ - 1 + 2 \cdot 3 \ge 4\\1 + 3 \le 5\end{array} \right.\) (đúng).

Vậy cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

c) Miền nghiệm D của hệ là miền tam giác \(ABC\), kể cả các cạnh (phần tô màu) với \(A\left( {0;2} \right),B\left( {2;3} \right),C\left( {1;4} \right)\)

Cho hệ bất phương trình -2x + y bé hơn bằng 2 , -x + 2y lớn hơn 4 và x +y bé hơn bằng 5  (ảnh 1)

d) Biểu thức \(F\left( {x,y} \right) = - x + y\) đạt giá trị nhỏ nhất tại một trong 3 điểm \(A\left( {0;2} \right),B\left( {2;3} \right),C\left( {1;4} \right)\).

Khi đó \(F\left( {0,2} \right) = 0 + 2 = 2\); \(F\left( {2,3} \right) = - 2 + 3 = 1\); \(F\left( {1,4} \right) = - 1 + 4 = 3\).

Vậy giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) = - x + y\) trên miền D xác định bởi hệ trên bằng 1.

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Lời giải

Gọi \(x,y\left( {x,y \in \mathbb{N}} \right)\) lần lượt là số quyển vở và bút bi An mua.

Theo đề ta có \(7000x + 5000y \le 100000\)\( \Leftrightarrow 7x + 5y \le 100\).

Mà An đã mua 10 quyển vở nên \(x = 10\).

Khi đó \(7 \cdot 10 + 5y \le 100\)\( \Leftrightarrow y \le 6\).

Vậy An có thể mua tối đa 6 chiếc bút bi.

Câu 4

A. \(\left\{ \begin{array}{l}2x + y + 2 \ge 0\\5x + 2y + 3 > 0\end{array} \right.\).     
B. \(\left\{ \begin{array}{l}x + {y^2} = 3\\x - 5y - 3 = 0\end{array} \right.\).  
C. \(\left\{ \begin{array}{l} - 2x + y > 2\\x + y < 2\end{array} \right.\).                    
D. \(\left\{ \begin{array}{l}y - 2 < 0\\x + 5 \ge 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x + 2y \le 3\).                  

B. \(2x + y < 3\).               
C. \(x - 2y > - 3\).             
D. \(x + 2y < 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP