Câu hỏi:

17/12/2025 42 Lưu

Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao \(AB = 70\;{\rm{m}}\), phương nhìn \(AC\) tạo với phương nằm ngang góc \(30^\circ \), phương nhìn \(BC\) tạo với phương nằm ngang góc \(60^\circ \). Tính chiều cao ngọn núi so với mặt đất.

Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

105
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết (ảnh 2)

Xét \(\Delta ABC\)\(\widehat {BAC} = 90^\circ + 30^\circ = 120^\circ \); \(\widehat {ABC} = 90^\circ - 60^\circ = 30^\circ \); \(\widehat {ACB} = 180^\circ - 120^\circ - 30^\circ = 30^\circ \).

Áp dụng định lí sin cho tam giác \(ABC\), có

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{70\sin 120^\circ }}{{\sin 30^\circ }} = 70\sqrt 3 \).

Xét \(\Delta AHC\)\(CH = BC\sin 60^\circ = 70\sqrt 3 \cdot \sin 60^\circ = 105\).

Vậy ngọn núi cao 105 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét \(\Delta ACH\)\(AH = \frac{{CH}}{{\tan 45^\circ }}\).

Xét \(\Delta BCH\)\(BH = \frac{{CH}}{{\tan 35^\circ }}\).

\(AH + BH = 105\) nên \(\frac{{CH}}{{\tan 45^\circ }} + \frac{{CH}}{{\tan 35^\circ }} = 105\)\( \Leftrightarrow CH = 105:\left( {\frac{1}{{\tan 45^\circ }} + \frac{1}{{\tan 35^\circ }}} \right) \approx 43,2\)(m).

Câu 2

a) Giá trị \(\sin \alpha \cdot \cos \alpha < 0\).

Đúng
Sai

b)\(\sin \alpha = \frac{{2\sqrt 2 }}{3}\).

Đúng
Sai

c)\(\tan \alpha = \frac{{\sqrt 2 }}{4}\).

Đúng
Sai
d) Giá trị biểu thức \(\frac{{6\sqrt 2 \sin \alpha + 3\cos \alpha }}{{\sqrt 2 \tan \alpha + 2\sqrt 2 \cot \alpha }} = \frac{9}{5}\).
Đúng
Sai

Lời giải

a) Với \(0^\circ < \alpha < 90^\circ \) thì \(\sin \alpha > 0\).

Khi đó \(\sin \alpha \cdot \cos \alpha > 0\).

b) Có \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9}\). Suy ra \(\sin \alpha = \frac{{2\sqrt 2 }}{3}\).

c) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{2\sqrt 2 }}{3}:\frac{1}{3} = 2\sqrt 2 \).

d) \[\frac{{6\sqrt 2 \sin \alpha + 3\cos \alpha }}{{\sqrt 2 \tan \alpha + 2\sqrt 2 \cot \alpha }} = \frac{{6\sqrt 2 \cdot \frac{{2\sqrt 2 }}{3} + 3 \cdot \frac{1}{3}}}{{\sqrt 2 \cdot 2\sqrt 2 + 2\sqrt 2  \cdot \frac{1}{{2\sqrt 2 }}}} = \frac{9}{5}\].

Đáp án: a) Sai;    b) Đúng;   c) Sai;    d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(AB \approx 7,20\)(kết quả làm tròn đến hàng phần trăm).

Đúng
Sai

b) Góc \(A\) là góc tù.

Đúng
Sai

c) Bán kính đường tròn nội tiếp tam giác \(ABC\) xấp xỉ bằng 1,96 (kết quả làm tròn đến hàng phần trăm).

Đúng
Sai
d) Gọi \(G\) là trọng tâm tam giác \(ABC\). Diện tích tam giác \(ABG\) bằng \(4\sqrt 3 \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Diện tích tam giác \(ABC\) bằng \(10\sqrt 3 \).

Đúng
Sai

b) \(BC = 7\).

Đúng
Sai

c) Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng \(\sqrt {43} \).

Đúng
Sai
d) \(MC = \sqrt {61} \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP