Câu hỏi:

18/12/2025 14 Lưu

Bạn Hải nhận thiết kế logo hình con mắt (phần được tô đậm) cho một cơ sở y tế: Logo là hình phẳng giới hạn bởi hai parabol \[y = f\left( x \right)\]\[y = g\left( x \right)\] như hình bên dưới (đơn vị trên mỗi trục toạ độ là decimét). Bạn Hải cần tính diện tích của logo để báo giá cho cơ sở y tế đó trước khi kí hợp đồng. Diện tích của logo là bao nhiêu decimét vuông (làm tròn kết quả đến hàng phần mười).

Bạn Hải nhận thiết kế logo hình c (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

9,8

Trả lời: 9,8

Gọi parabol \(y = f\left( x \right)\) có dạng \(f\left( x \right) = a{x^2} + bx + c\). Parabol \(y = f\left( x \right)\) nhận \(Oy\) làm trục đối xứng nên ta có \(\frac{{ - b}}{{2a}} = 0 \Leftrightarrow b = 0\). Lại có đồ thị hàm số \(y = f\left( x \right)\) đi qua điểm \(\left( {0; - 1} \right)\) và điểm \(\left( {2;0} \right)\) nên \(a = \frac{1}{4}\)\(c = - 1\).

Vậy parabol \(y = f\left( x \right) = \frac{1}{4}{x^2} - 1\).

Tương tự, ta cũng có parabol \(y = g\left( x \right) = - \frac{1}{4}{x^2} + 2\).

Phương trình hoành độ giao điểm của \(f\left( x \right)\)\(g\left( x \right)\) là:

\(\frac{1}{4}{x^2} - 1 = - \frac{1}{4}{x^2} + 2 \Leftrightarrow x = \sqrt 6 \) hoặc \(x = - \sqrt 6 \).

Khi đó, diện tích của logo là:

\[\begin{array}{l}S = \int\limits_{ - \sqrt 6 }^{\sqrt 6 } {\left[ {\left( { - \frac{1}{4}{x^2} + 2} \right) - \left( {\frac{1}{4}{x^2} - 1} \right)} \right]dx} \\\,\,\, = \int\limits_{ - \sqrt 6 }^{\sqrt 6 } {\left( {3 - \frac{1}{2}{x^2}} \right)dx = } \left. {\left( {3x - \frac{{{x^3}}}{6}} \right)} \right|_{ - \sqrt 6 }^{\sqrt 6 } = 4\sqrt 6 \approx 9,8\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right)\end{array}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 15

Đường thẳng \(AB\) có vectơ chỉ phương là \(\vec u = (5;\,10;\, - 3)\), mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến là \(\vec n = (0\,;0\,;1)\).

Từ đó, góc \(\alpha \) giữa đường bay (một phần của đường thẳng \(AB\)) và sân bay (một phần của mặt phẳng\((Oxy))\)\(\sin \alpha = \frac{3}{{\sqrt {134} }}\).

Suy ra \(\alpha \approx 15^\circ \).

Lời giải

Trả lời: 4

Hình phẳng đã cho được giới hạn bởi các đồ thị hàm số \(y = \cos x,\,y = x\) và hai đường thẳng \(x = 1,\,x = 3\). Khi đó diện tích hình phẳng được tính theo công thức

\(S = \int\limits_1^3 {\left| {\cos x - x} \right|{\rm{d}}x} \). Vì \(x \ge \cos x,\,\forall x \in \left[ {1;3} \right]\) nên ta có:

\(S = \int\limits_1^3 {\left( {x - \cos x} \right){\rm{d}}x} = \left. {\left( {\frac{{{x^2}}}{2} - \sin x} \right)} \right|_1^3 = 4 - \sin 3 + \sin 1 \approx 4\).

Câu 4

A. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} + 1 = 0\).                               
B. \(\frac{x}{3} + \frac{y}{2} + \frac{z}{7} = 1\).         
C. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} = 1\).         
D. \(\frac{x}{3} - \frac{y}{2} + \frac{z}{7} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = \int\limits_{ - 1}^{ - 0,5} {f\left( x \right)dx} \].                                             
B. \[S = \int\limits_{ - 1}^0 {f\left( x \right)dx} \].                 
C. \[S = - \left| {\int\limits_1^{ - 0,5} {f\left( x \right)dx} } \right|\].                                                       
D.\[S = - \int\limits_{ - 1}^{0,5} {f\left( x \right)dx} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP