Trong không gian \(Oxyz\), cho hai đường thẳng \({d_1}\,:\,\,\,\frac{{x - 1}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 1}}\) và \({d_2}\,:\,\,\,\frac{{x + 1}}{{ - 1}} = \frac{y}{2} = \frac{{z - 1}}{1}\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) đi qua điểm nào sau đây?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Đường thẳng \({d_1}\) đi qua điểm \({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;\,2;\, - 1} \right)\).
Đường thẳng \({d_2}\) đi qua điểm \({M_2}\left( { - 1;\,0;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;\,2;\,1} \right)\).
Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) suy ra \(\left( P \right)\)đi qua điểm\({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {4;\,0;\,4} \right)\).
Phương trình mặt phẳng \(\left( P \right)\): \(4\left( {x - 1} \right) + 0\left( {y + 1} \right) + 4\left( {z - 1} \right) = 0 \Leftrightarrow x + z - 2 = 0\).
Dễ thấy điểm \(Q\left( {0;\,1;\,2} \right) \in \left( P \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 240
Cốc hình trụ có bán kính R = 6 cm, chiều cao h = 10 cm.
Chọn hệ trục tọa độ như hình vẽ

Mặt phẳng tùy ý vuông góc với trục \(Ox\) tại điểm \(x\left( { - 6 \le x \le 6} \right)\) cắt vật thể theo theo thiết diện có diện tích là \(S\left( x \right)\).
Ta có \(S\left( x \right) = {S_{ABC}} = \frac{1}{2}AB.BC = \frac{1}{2}B{C^2}\tan \alpha = \frac{1}{2}\left( {{R^2} - {x^2}} \right)\frac{h}{R} = \frac{{5\left( {36 - {x^2}} \right)}}{6}\).
Vậy thể tích lượng nước trong cốc là \(V = \int\limits_{ - 6}^6 {S\left( x \right)dx} = \int\limits_{ - 6}^6 {\frac{{5\left( {36 - {x^2}} \right)}}{6}dx} = 240\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
Lời giải
Trả lời: −6
Suy ra: \(a = 2,b = - 3\). Do đó \(P = ab = - 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
