Câu hỏi:

18/12/2025 13 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Tại một khu di tích vào ngày lễ hội hàng năm, tốc độ thay đổi lượng khách tham quan được biểu diễn bằng hàm số \(Q'\left( t \right) = 4{t^3} - 72{t^2} + 288t\), trong đó \(t\) tính bằng giờ \(\left( {0 \le t \le 13} \right)\), \(Q'\left( t \right)\) tính bằng khách/giờ. Sau 2 giờ đã có 500 người có mặt.

a) Lượng khách tham quan được biểu diễn bởi hàm số \(Q\left( t \right) = {t^4} - 24{t^3} + 144{t^2}\).
Đúng
Sai
b) Sau 5 giờ lượng khách tham quan là \(1325\) người.
Đúng
Sai
c) Lượng khách tham quan lớn nhất là \(1296\) người.
Đúng
Sai
d) Tốc độ thay đổi lượng khách tham quan lớn nhất tại thời điểm \(t = 6\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) Đ, c) S, d) S

a) \(Q\left( t \right) = \int {Q'\left( t \right)dt} = \int {\left( {4{t^3} - 72{t^2} + 288t} \right)dt} = {t^4} - 24{t^3} + 144{t^2} + C\).

\(Q\left( 2 \right) = 500\) nên \({2^4} - {24.2^3} + {144.2^2} + C = 500\)\( \Leftrightarrow C = 100\).

Do đó \(Q\left( t \right) = {t^4} - 24{t^3} + 144{t^2} + 100\).

b) Ta có \(Q\left( 5 \right) = {5^4} - {24.5^3} + {144.5^2} + 100 = 1325\).

c) Có \(Q'\left( t \right) = 4{t^3} - 72{t^2} + 288t = 0 \Leftrightarrow t = 0;t = 6;t = 12\).

\(Q\left( 0 \right) = 100;Q\left( 6 \right) = {6^4} - {24.6^3} + {144.6^2} + 100 = 1396\);

\(Q\left( {12} \right) = {12^4} - {24.12^3} + {144.12^2} + 100 = 100\).

Do đó lượng khách tham quan lớn nhất là \(1396\) người khi \(t = 6\) giờ.

d) Ta có \(Q''\left( t \right) = 12{t^2} - 144t + 288\); \(Q''\left( t \right) = 0 \Leftrightarrow t = 6 \pm 2\sqrt 3 \).

\(Q'\left( 0 \right) = 0;Q'\left( {6 - 2\sqrt 3 } \right) = 4.{\left( {6 - 2\sqrt 3 } \right)^3} - 72.{\left( {6 - 2\sqrt 3 } \right)^2} + 288.\left( {6 - 2\sqrt 3 } \right) \approx 333\);

\(Q'\left( {6 + 2\sqrt 3 } \right) = 4.{\left( {6 + 2\sqrt 3 } \right)^3} - 72.{\left( {6 + 2\sqrt 3 } \right)^2} + 288.\left( {6 + 2\sqrt 3 } \right) \approx - 333\);

\(Q'\left( {13} \right) = {4.13^3} - {72.13^2} + 288.13 \approx 364\).

Tốc độ thay đổi lượng khách tham quan lớn nhất tại thời điểm \(t = 13\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 240

Cốc hình trụ có bán kính R = 6 cm, chiều cao h = 10 cm.

Chọn hệ trục tọa độ như hình vẽ

Cho một cái cốc thủy tinh hình trụ bán kính đáy là 6 cm, chiều cao là 10 cm đang đựng một lượng nước. Tính thể tích lượng nước trong cốc (đơn vị cm3), biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì ở đáy mực nước trùng với đường kính đáy? (ảnh 2)

Mặt phẳng tùy ý vuông góc với trục \(Ox\) tại điểm \(x\left( { - 6 \le x \le 6} \right)\) cắt vật thể theo theo thiết diện có diện tích là \(S\left( x \right)\).

Ta có \(S\left( x \right) = {S_{ABC}} = \frac{1}{2}AB.BC = \frac{1}{2}B{C^2}\tan \alpha = \frac{1}{2}\left( {{R^2} - {x^2}} \right)\frac{h}{R} = \frac{{5\left( {36 - {x^2}} \right)}}{6}\).

Vậy thể tích lượng nước trong cốc là \(V = \int\limits_{ - 6}^6 {S\left( x \right)dx} = \int\limits_{ - 6}^6 {\frac{{5\left( {36 - {x^2}} \right)}}{6}dx} = 240\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Lời giải

Trả lời: −6

02x1x2+4x+3dx=02x1x+1x+3dx=021x+1+2x+3dx=lnx+1+2lnx+320=2ln53ln3.

Suy ra: \(a = 2,b = - 3\). Do đó \(P = ab = - 6\).

Câu 5

A. \(P\left( A \right) = P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right).\)              
B. \(P\left( A \right) = P\left( B \right).P\left( {\left. B \right|A} \right) + P\left( {\bar B} \right).P\left( {\left. B \right|\bar A} \right).\)    
C. \(P\left( A \right) = P\left( A \right).P\left( {\left. A \right|B} \right) + P\left( {\bar A} \right).P\left( {\left. A \right|\bar B} \right).\)              
D. \(P\left( A \right) = P\left( A \right).P\left( {\left. B \right|A} \right) + P\left( {\bar A} \right).P\left( {\left. B \right|\bar A} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP