Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) có tâm \(I\left( {a;b;c} \right)\) nằm trên đường thẳng \(d:\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z - 2}}{1}\) và tiếp xúc với hai đường thẳng \(\left( P \right):2x - z - 4 = 0\), \(\left( Q \right):x - 2y - 2 = 0\). Tổng \(P = a + b + c\) bằng bao nhiêu?
Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) có tâm \(I\left( {a;b;c} \right)\) nằm trên đường thẳng \(d:\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z - 2}}{1}\) và tiếp xúc với hai đường thẳng \(\left( P \right):2x - z - 4 = 0\), \(\left( Q \right):x - 2y - 2 = 0\). Tổng \(P = a + b + c\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 6
Vì \(I \in d\) nên \(I\left( {t;1 + t;2 + t} \right)\).
Theo đề ta có \(d\left( {I,\left( P \right)} \right) = d\left( {I,\left( Q \right)} \right)\) \( \Leftrightarrow \frac{{\left| {2t - 2 - t - 4} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {t - 2 - 2t - 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} }}\)
\( \Leftrightarrow \left| {t - 6} \right| = \left| { - t - 4} \right|\)\( \Leftrightarrow t = 1\). Suy ra \(I\left( {1;2;3} \right)\). Do đó \(P = 6\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 240
Cốc hình trụ có bán kính R = 6 cm, chiều cao h = 10 cm.
Chọn hệ trục tọa độ như hình vẽ

Mặt phẳng tùy ý vuông góc với trục \(Ox\) tại điểm \(x\left( { - 6 \le x \le 6} \right)\) cắt vật thể theo theo thiết diện có diện tích là \(S\left( x \right)\).
Ta có \(S\left( x \right) = {S_{ABC}} = \frac{1}{2}AB.BC = \frac{1}{2}B{C^2}\tan \alpha = \frac{1}{2}\left( {{R^2} - {x^2}} \right)\frac{h}{R} = \frac{{5\left( {36 - {x^2}} \right)}}{6}\).
Vậy thể tích lượng nước trong cốc là \(V = \int\limits_{ - 6}^6 {S\left( x \right)dx} = \int\limits_{ - 6}^6 {\frac{{5\left( {36 - {x^2}} \right)}}{6}dx} = 240\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
Lời giải
Trả lời: −6
Suy ra: \(a = 2,b = - 3\). Do đó \(P = ab = - 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
