Câu hỏi:

18/12/2025 6 Lưu

Một con xúc xắc cân đối, đánh số từ 1 đến 6, được gieo 2 lần liên tiếp. Xét các biến cố:

\(A\): "Tổng số chấm trong hai lần gieo là số chẵn",

\(B\): "Số chấm ở lần gieo thứ nhất là số lẻ" ,

Xác định biến cố \(A\) khi biết \(B\) đã xảy ra.

A. \[A|B{\rm{ }} = {\rm{ }}\left\{ {\left( {1,1} \right);\left( {1,3} \right);\left( {1,5} \right);\left( {3,1} \right);\left( {3,3} \right);\left( {3,5} \right);\left( {5,1} \right);\left( {5,3} \right);\left( {5,5} \right)} \right\}\].    
B. \[\begin{array}{l}A|B{\rm{ }} = {\rm{ }}\{ \left( {1,1} \right);\left( {1,3} \right);\left( {1,5} \right);\left( {3,1} \right);\left( {3,3} \right);\left( {3,5} \right);\left( {5,1} \right);\left( {5,3} \right);\left( {5,5} \right);\\ & \,\,\,\,\left( {1,2} \right);\left( {1,4} \right);\left( {1,6} \right);\left( {3,2} \right);\left( {3,4} \right);\left( {3,6} \right);\left( {5,2} \right);\left( {5,4} \right);\left( {5,6} \right)\} \end{array}\].    
C. \[A|B{\rm{ }} = {\rm{ }}\left\{ {\left( {1,2} \right);\left( {1,4} \right);\left( {1,6} \right);\left( {3,2} \right);\left( {3,4} \right);\left( {3,6} \right);\left( {5,2} \right);\left( {5,4} \right);\left( {5,6} \right)} \right\}\].    
D. \[A|B = {\rm{ }}\left\{ {\left( {1,1} \right);\left( {1,3} \right);\left( {1,5} \right);\left( {3,3} \right);\left( {3,5} \right);\left( {5,1} \right);\left( {5,3} \right);\left( {5,5} \right)} \right\}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Khi B đã xảy ra, nghĩa là lần gieo đầu tiên ra số lẻ (1, 3 hoặc 5).

Do đó, không gian mẫu mới là

\[B = {\rm{ }}\{ \left( {1,1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {1,6} \right);\left( {3,1} \right);\left( {3,2} \right);\left( {3,3} \right);\left( {3,4} \right);\left( {3,5} \right);\left( {3,6} \right);\]

\[\left( {5,1} \right);\left( {5,2} \right);\left( {5,3} \right);\left( {5,4} \right);\left( {5,5} \right);\left( {5,6} \right)\} \]

Khi đó, biến cố \(A\) khi biết \(B\) đã xảy ra là

\[A|B{\rm{ }} = {\rm{ }}\left\{ {\left( {1,1} \right);\left( {1,3} \right);\left( {1,5} \right);\left( {3,1} \right);\left( {3,3} \right);\left( {3,5} \right);\left( {5,1} \right);\left( {5,3} \right);\left( {5,5} \right)} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Đường thẳng \({d_1}\) đi qua điểm \({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;\,2;\, - 1} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2}\left( { - 1;\,0;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;\,2;\,1} \right)\).

Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) suy ra \(\left( P \right)\)đi qua điểm\({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {4;\,0;\,4} \right)\).

Phương trình mặt phẳng \(\left( P \right)\): \(4\left( {x - 1} \right) + 0\left( {y + 1} \right) + 4\left( {z - 1} \right) = 0 \Leftrightarrow x + z - 2 = 0\).

Dễ thấy điểm \(Q\left( {0;\,1;\,2} \right) \in \left( P \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[\overrightarrow n = \left( {0;1;1} \right)\].                      
B.\[\overrightarrow n = \left( {0; - 1;1} \right)\].                      
C.\[\overrightarrow n = \left( {1;0;1} \right)\].                      
D.\[\overrightarrow n = \left( {0;2;1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P\left( A \right) = P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right).\)              
B. \(P\left( A \right) = P\left( B \right).P\left( {\left. B \right|A} \right) + P\left( {\bar B} \right).P\left( {\left. B \right|\bar A} \right).\)    
C. \(P\left( A \right) = P\left( A \right).P\left( {\left. A \right|B} \right) + P\left( {\bar A} \right).P\left( {\left. A \right|\bar B} \right).\)              
D. \(P\left( A \right) = P\left( A \right).P\left( {\left. B \right|A} \right) + P\left( {\bar A} \right).P\left( {\left. B \right|\bar A} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP