Câu hỏi:

18/12/2025 14 Lưu

Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh nam nữ tại một trường phổ thông H. Xét phép thử chọn ngẫu nhiên 1 học sinh trong nhóm đó.

gọi \(A\) là biến cố “học sinh được chọn biết chơi ít nhất một nhạc cụ”,

\(B\) là biến cố “học sinh được chọn là nam”.

Biết xác xuất học sinh được chọn là nam bằng 0,6; xác suất học sinh được chọn là nam và biết chơi ít nhất một nhạc cụ là 0,3; xác suất học sinh được chọn là nữ và biết chơi ít nhất một nhạc cụ là 0,15. Tính \(P\left( A \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,24

Trả lời: 0,24

Từ giả thiết ta có \(P\left( B \right) = 0,6 \Rightarrow P\left( {\overline B } \right) = 1 - 0,6 = 0,4;\,\,P\left( {A|B} \right) = 0,3;\,\,P\left( {A|\overline B } \right) = 0,15\).

Theo công thức xác suất từng phần, ta có :

\(P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right) = 0,6.0,3 + 0,4.0,15 = 0,24\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 6

\(I \in d\) nên \(I\left( {t;1 + t;2 + t} \right)\).

Theo đề ta có \(d\left( {I,\left( P \right)} \right) = d\left( {I,\left( Q \right)} \right)\) \( \Leftrightarrow \frac{{\left| {2t - 2 - t - 4} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {t - 2 - 2t - 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} }}\)

\( \Leftrightarrow \left| {t - 6} \right| = \left| { - t - 4} \right|\)\( \Leftrightarrow t = 1\). Suy ra \(I\left( {1;2;3} \right)\). Do đó \(P = 6\).

Lời giải

Đáp án đúng là: B

Đường thẳng \({d_1}\) đi qua điểm \({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;\,2;\, - 1} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2}\left( { - 1;\,0;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;\,2;\,1} \right)\).

Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) suy ra \(\left( P \right)\)đi qua điểm\({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {4;\,0;\,4} \right)\).

Phương trình mặt phẳng \(\left( P \right)\): \(4\left( {x - 1} \right) + 0\left( {y + 1} \right) + 4\left( {z - 1} \right) = 0 \Leftrightarrow x + z - 2 = 0\).

Dễ thấy điểm \(Q\left( {0;\,1;\,2} \right) \in \left( P \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[\overrightarrow n = \left( {0;1;1} \right)\].                      
B.\[\overrightarrow n = \left( {0; - 1;1} \right)\].                      
C.\[\overrightarrow n = \left( {1;0;1} \right)\].                      
D.\[\overrightarrow n = \left( {0;2;1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(P\left( A \right) = P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right).\)              
B. \(P\left( A \right) = P\left( B \right).P\left( {\left. B \right|A} \right) + P\left( {\bar B} \right).P\left( {\left. B \right|\bar A} \right).\)    
C. \(P\left( A \right) = P\left( A \right).P\left( {\left. A \right|B} \right) + P\left( {\bar A} \right).P\left( {\left. A \right|\bar B} \right).\)              
D. \(P\left( A \right) = P\left( A \right).P\left( {\left. B \right|A} \right) + P\left( {\bar A} \right).P\left( {\left. B \right|\bar A} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[M\left( { - 1;0;0} \right)\]               
B. \(N\left( {0; - 2;0} \right)\).              
C. \(P\left( {1; - 2;1} \right)\).                      
D. \(Q\left( {1;2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP