PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^3} + 3x - 2\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) S
a) \(F'\left( x \right) = f\left( x \right)\).
b) \(\int {f\left( x \right)} dx = F\left( x \right)\).
c) \(\int {f\left( x \right)dx} = \int {\left( {{x^3} + 3x - 2} \right)dx} = \frac{{{x^4}}}{4} + 3\frac{{{x^2}}}{2} - 2x + C\).
Vì đồ thị hàm số \(y = F\left( x \right)\) đi qua điểm \(M\left( {2;10} \right)\) nên \(F\left( 2 \right) = 10\).
Suy ra \(\frac{{{2^4}}}{4} + 3.\frac{{{2^2}}}{2} - 2.2 + C = 10\)\( \Leftrightarrow C = 4\).
Do đó \(F\left( x \right) = \frac{{{x^4}}}{4} + 3\frac{{{x^2}}}{2} - 2x + 4\).
Vậy \(F\left( { - 2} \right) = \frac{{{{\left( { - 2} \right)}^4}}}{4} + 3\frac{{{{\left( { - 2} \right)}^2}}}{2} - 2.\left( { - 2} \right) + 4 = 18\).
d) Ta có \(\int\limits_0^2 {f\left( x \right)dx} = \int\limits_0^2 {\left( {{x^3} + 3x - 2} \right)dx} = 6 = F\left( 2 \right) - F\left( 0 \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đ, b) S, c) S, d) S
a) \(\int\limits_0^1 {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_0^1 = F\left( 1 \right) - F\left( 0 \right) = - \frac{7}{2}\).
b) \(\int\limits_0^2 {f\left( x \right)dx = \left. {F\left( x \right)} \right|_0^2 = F\left( 2 \right) - F\left( 0 \right) = - 2} \) mà \(F\left( 0 \right) = 3\) nên \(F\left( 2 \right) = 1\).
c) \(\int {f\left( x \right)} dx = \int {\left( {a{x^2} + bx + c} \right)dx} = \frac{a}{3}{x^3} + \frac{b}{2}{x^2} + cx + C\).
d) Vì \(\int\limits_0^1 {f\left( x \right)dx} = - \frac{7}{2}\) nên \(\frac{a}{3} + \frac{b}{2} + c = - \frac{7}{2}\) (1) và \(\int\limits_0^2 {f\left( x \right)dx = - 2} \) nên \(\frac{{8a}}{3} + 2b + 2c = - 2\) (2).
Từ (1) và (2), ta có
\( \Rightarrow \left\{ \begin{array}{l}2a + 3\left( {5 - 2a} \right) + 6c = - 21\\b = 5 - 2a\end{array} \right.\)\[ \Rightarrow \left\{ \begin{array}{l} - 2a + 3c = - 18\\b = 5 - 2a\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}c = \frac{{ - 18 + 2a}}{3}\\b = 5 - 2a\end{array} \right.\].
Do đó \(a + b + 3c = a + 5 - 2a - 18 + 2a = a - 13\).
Câu 2
Lời giải
a) S, b) S, c) S, d) Đ
Gọi A là biến cố: “Sản phẩm bị thất lạc là sản phẩm loại II”
B là biến cố: “Sản phẩm bị thất lạc là sản phẩm loại I”
C là biến cố “Lấy được sản phẩm loại I từ 19 sản phẩm còn lại”.
a) Xác suất sản phẩm bị thất lạc là sản phẩm loại II là \(P\left( A \right) = \frac{{17}}{{20}}\).
b) Ta có \(P\left( {C|A} \right) = \frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}} = \frac{3}{{19}}\).
c) Ta có \(P\left( {C|B} \right) = \frac{2}{{19}}\).
d) Ta có \(P\left( C \right) = P\left( A \right).P\left( {C|A} \right) + P\left( B \right).P\left( {C|B} \right) = \frac{{17}}{{20}}.\frac{3}{{19}} + \frac{3}{{20}}.\frac{2}{{19}} = \frac{3}{{20}} = 15\% \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
