Câu hỏi:

18/12/2025 7 Lưu

Một bác thợ gốm làm một cái chậu trồng cây, phần trong chậu cây có dạng khối tròn xoay được tạo thành khi quay hình phẳng được tô đậm như hình sau quanh trục \(Ox\)(đơn vị trên trục là đềximét), biết đường cong trong hình là đồ thị của hàm số \(y = \sqrt {x + 1} \), đáy chậu và miệng chậu có đường kính lần lượt là 2 dm và 4 dm. Dung tích của chậu là bao nhiêu? (kết quả làm tròn đến hàng phần mười)

Một bác thợ gốm làm một cái chậu trồng c (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

23,6

Trả lời: 23,6

Chọn hệ trục tọa độ như hình vẽ

Theo đề ta có \(\sqrt {x + 1} = 2 \Leftrightarrow x = 3\).

Dung tích của chậu là \(V = \pi \int\limits_0^3 {{{\left( {\sqrt {x + 1} } \right)}^2}dx} \)\( = \pi \int\limits_0^3 {\left( {x + 1} \right)dx} = \frac{{15\pi }}{2} \approx 23,6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 5,8

Xét phương trình hoành độ giao điểm \[\sqrt x - 2 = 0 \Leftrightarrow x = 4\].

Thể tích khối tròn xoay tạo thành là

\[V = {\rm{\pi }}\int\limits_4^9 {{{\left( {\sqrt x - 2} \right)}^2}{\rm{d}}x} = {\rm{\pi }}\int\limits_4^9 {\left( {x - 4\sqrt x + 4} \right){\rm{d}}x} = \left. {{\rm{\pi }}\left( {\frac{{{x^2}}}{2} - \frac{8}{3}x\sqrt x + 4x} \right)} \right|_4^9 = \frac{{11\pi }}{6} \approx 5,8\].

Câu 2

a) \(F\left( 1 \right) - F\left( 0 \right) = - \frac{7}{2}\).
Đúng
Sai
b) Cho \(F\left( 0 \right) = 3\) thì khi đó \(F\left( 2 \right) = 5\).
Đúng
Sai
c) \(\int {f\left( x \right)} dx = \int {\left( {a{x^2} + bx + c} \right)dx} = \frac{a}{3}{x^3} + \frac{b}{2}{x^2} + cx\).
Đúng
Sai
d) \(a + b + 3c = - 12\).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) S

a) \(\int\limits_0^1 {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_0^1 = F\left( 1 \right) - F\left( 0 \right) = - \frac{7}{2}\).

b) \(\int\limits_0^2 {f\left( x \right)dx = \left. {F\left( x \right)} \right|_0^2 = F\left( 2 \right) - F\left( 0 \right) = - 2} \)\(F\left( 0 \right) = 3\) nên \(F\left( 2 \right) = 1\).

c) \(\int {f\left( x \right)} dx = \int {\left( {a{x^2} + bx + c} \right)dx} = \frac{a}{3}{x^3} + \frac{b}{2}{x^2} + cx + C\).

d) Vì \(\int\limits_0^1 {f\left( x \right)dx} = - \frac{7}{2}\) nên \(\frac{a}{3} + \frac{b}{2} + c = - \frac{7}{2}\) (1) và \(\int\limits_0^2 {f\left( x \right)dx = - 2} \) nên \(\frac{{8a}}{3} + 2b + 2c = - 2\) (2).

Từ (1) và (2), ta có a3+b2+c=728a3+2b+2c=2 2a+3b+6c=218a+6b+6c=6 2a+3b+6c=212a+b=5

\( \Rightarrow \left\{ \begin{array}{l}2a + 3\left( {5 - 2a} \right) + 6c = - 21\\b = 5 - 2a\end{array} \right.\)\[ \Rightarrow \left\{ \begin{array}{l} - 2a + 3c = - 18\\b = 5 - 2a\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}c = \frac{{ - 18 + 2a}}{3}\\b = 5 - 2a\end{array} \right.\].

Do đó \(a + b + 3c = a + 5 - 2a - 18 + 2a = a - 13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow u = \left( {2;1; - 2} \right)\).
Đúng
Sai
b) Đường thẳng \(d\) đi qua điểm \(A\left( {5; - 3; - 31} \right)\).
Đúng
Sai
c) Mặt phẳng \(\left( P \right)\) chứa \(I\left( {2;3; - 1} \right)\) và vuông góc với đường thẳng \(d\) có phương trình là \(2x + y - 2z - 9 = 0\).
Đúng
Sai
d) Mặt cầu \(\left( S \right)\) có phương trình là \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 225\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {{n_3}} = \left( {1;2; - 1} \right)\).                      
B. \(\overrightarrow {{n_4}} = \left( {1;2;3} \right)\).         
C. \(\overrightarrow {{n_1}} = \left( {1;3; - 1} \right)\).      
D. \(\overrightarrow {{n_2}} = \left( {2;3; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).       
B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \).    
C. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).       
D. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP