Câu hỏi:

18/12/2025 4 Lưu

Một cửa hàng dự định nhập hai loại sản phẩm. Mỗi sản phẩm loại A có giá 200 nghìn đồng. Mỗi sản phẩm loại B có giá 300 nghìn đồng. Cửa hàng chỉ có số tiền tối đa là 12 triệu đồng để nhập hàng. Gọi \(x\)\(y\) lần lượt là số sản phẩm loại A và loại B được nhập. Hãy lập bất phương trình theo \(x\)\(y\) để biểu diễn điều kiện về chi phí mà cửa hàng phải thỏa mãn.

A. \(200x + 300y \ge 12000\).                                                                               

B. \(x + y \le 12\).                           

C. \(200x + 300y = 12000\).                                                                                  
D. \(200x + 300y \le 12000\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề ta có \(200x + 300y \le 12000\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

D là đường thẳng đi qua điểm \(\left( {\frac{3}{2};0} \right),\left( {0;3} \right)\) có phương trình là \(2x + y = 3\).

Do đó phần không tô màu là miền nghiệm của bất phương trình \(2x + y \le 3\).

Suy ra \(a = 2;b = 1\). Do đó \(10a - \frac{b}{5} = 10 \cdot 2 - \frac{1}{5} = 19,8\).

Lời giải

\(2x - 5y + m \ge 0\)\( \Leftrightarrow m \ge - 2x + 5y\).

Để bất phương trình \(2x - 5y + m \ge 0\) nghiệm đúng với mọi cặp số \(\left( {x;y} \right)\) thỏa mãn hệ bất phương trình \(\left( I \right)\) thì \(m \ge \max \left( { - 2x + 5y} \right)\) với mọi cặp số \(\left( {x;y} \right)\) thỏa mãn hệ bất phương trình \(\left( I \right)\).

Miền nghiệm của hệ bất phương trình là miền tam giác \(ABC\)( kể cả cạnh của tam giác) (phần tô màu) với \(A\left( {2;3} \right),B\left( {8;3} \right),C\left( {4;1} \right)\).

Cho hệ bất phương trình x+ y lớn hơn bằng 5 , x-2y bé hơn bằng 2 , y bé hơn bằng 3 (ảnh 1)

Giá trị lớn nhất của biểu thức \(F\left( {x;y} \right) = - 2x + 5y\) đạt được tại một trong ba điểm \(A\left( {2;3} \right),B\left( {8;3} \right),C\left( {4;1} \right)\)

Ta có \(F\left( {2;3} \right) = - 2 \cdot 2 + 5 \cdot 3 = 11\); \(F\left( {8;3} \right) = - 2 \cdot 8 + 5 \cdot 3 = - 1\); \(F\left( {4;1} \right) = - 2 \cdot 4 + 5 \cdot 1 = - 3\).

Vậy giá trị lớn nhất của biểu thức \(F\left( {x;y} \right) = - 2x + 5y\) là 11.

Do đó \(m \ge 11\).

Vì m nhỏ nhất nên \(m = 11\).

Câu 3

A. Nửa mặt phẳng chứa gốc tọa độ (không kể bờ \(x - 3y = 3\)).

B. Nửa mặt phẳng không chứa gốc tọa độ (không kể bờ \(x - 3y = 3\)).

C. Nửa mặt phẳng chứa gốc tọa độ (kể cả bờ \(x - 3y = 3\)).

D. Nửa mặt phẳng không chứa gốc tọa độ (kể cả bờ \(x - 3y = 3\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {3;3} \right)\).  
B. \(\left( {5;0} \right)\).  
C. \(\left( {0;0} \right)\).  
D. \(\left( {4;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left\{ \begin{array}{l}y \ge 0\\5x - 4y \ge 10\\5x + 4y \le 10\end{array} \right.\).     

B. \(\left\{ \begin{array}{l}x \ge 0\\5x - 4y \le 10\\4x + 5y \le 10\end{array} \right.\).     
C. \(\left\{ \begin{array}{l}x \ge 0\\4x - 5y \le 10\\5x + 4y \le 10\end{array} \right.\).     
D. \(\left\{ \begin{array}{l}x > 0\\5x - 4y \le 10\\4x + 5y \le 10\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}2x - y > 1\\x + 5y \le - 5\end{array} \right.\).       
B. \(\left\{ \begin{array}{l}2xy > 1\\x + 2y \le - 5\end{array} \right.\).                    
C. \(\left\{ \begin{array}{l}x + \sqrt y > 1\\x - 3y \le - 5\end{array} \right.\).         
D. \(\left\{ \begin{array}{l}x - {y^2} \le 6\\{x^2} + 2y > 5\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP