Câu hỏi:

18/12/2025 277 Lưu

Một lớp học có 50 học sinh, trong đó có 20 học sinh nam và 30 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.

a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,4.
Đúng
Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng 0,5.
Đúng
Sai
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,6.
Đúng
Sai
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,4.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) S, d) Đ

a) Xác suất học sinh được chọn là học sinh giỏi bằng \(\frac{{20}}{{50}} = 0,4\).

b) Xác suất học sinh được chọn là học sinh nữ bằng \(\frac{{30}}{{50}} = 0,6\).

c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng \(\frac{{12}}{{50}} = 0,24\).

d) Gọi A là biến cố “Học sinh được chọn là học sinh nữ”

B là biến cố “Học sinh được chọn là học sinh giỏi”.

Cần tính \(P\left( {B|A} \right) = \frac{{P\left( {B \cap A} \right)}}{{P\left( A \right)}} = \frac{{0,24}}{{0,6}} = 0,4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 0,4

Đường thẳng \(AB\) đi qua điểm \(A\left( {3; - 2;1} \right)\) và nhận \(\overrightarrow {AB} = \left( { - 1; - 3; - 1} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\end{array} \right.\).

Mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 16\) có tâm \(I\left( {2; - 1; - 1} \right)\).

\(\overrightarrow {IM} = \left( { - \frac{8}{9}; - \frac{{16}}{9};\frac{{16}}{9}} \right) = - \frac{8}{9}\left( {1;2; - 2} \right)\).

Mặt phẳng \(\left( P \right)\) đi qua \(M\left( {\frac{{10}}{9}; - \frac{{25}}{9};\frac{7}{9}} \right)\) nhận vectơ \(\overrightarrow n = \left( {1;2; - 2} \right)\) làm vectơ pháp tuyến có phương trình là \(x + 2y - 2z + 6 = 0\).

Giả sử H là giao điểm của \(AB\) và mặt phẳng \(\left( P \right)\) khi đó tọa độ H là nghiệm của hệ

\(\left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\x + 2y - 2z + 6 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\3 - t + 2\left( { - 2 - 3t} \right) - 2\left( {1 - t} \right) + 6 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\5t = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{12}}{5}\\y = - \frac{{19}}{5}\\z = \frac{2}{5}\\t = \frac{3}{5}\end{array} \right.\). Suy ra \(H\left( {\frac{{12}}{5}; - \frac{{19}}{5};\frac{2}{5}} \right)\).

Vậy độ cao của máy bay khi đi xuyên qua đám mây để hạ cánh là 0,4 km.

Câu 2

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).
Đúng
Sai
b) Tọa độ tổng quát của tâm \(I\)\(\left( {t; - 1 + 2t; - 2 - t} \right)\).
Đúng
Sai
c) \(d\left( {I,\left( P \right)} \right) = 3\).
Đúng
Sai
d) Mặt cầu \(\left( S \right)\) có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).
Đúng
Sai

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).

b) Vì \(I \in d\) nên \(\left( {t;1 + 2t;2 - t} \right)\).

c) Mặt cầu \(\left( S \right)\) có tâm \(I\) thuộc đường thẳng \(d\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn lớn nhất có bán kính \(r = 5\)nên giao tuyến đó là đường tròn đi qua tâm của mặt cầu.

Suy ra \(I \in \left( P \right)\)\(R = 5\).

Do đó \(d\left( {I,\left( P \right)} \right) = 0\).

d) Vì \(I \in \left( P \right)\) nên \(3.t + 1 + 2t - 2 + t - 5 = 0\)\( \Leftrightarrow t = 1\). Suy ra \(I\left( {1;3;1} \right)\).

Vậy \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).

Câu 6

A. \(\left\{ \begin{array}{l}x = 1 + t\\y = - 2 + 2t\\z = - 1 + 3t\end{array} \right..\)                               
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 2t\\z = 3 - t\end{array} \right..\)    
C. \(\left\{ \begin{array}{l}x = - 1 + t\\y = - 2 - 2t\\z = - 3 - t\end{array} \right..\)                              
D. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + t\end{array} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP