Câu hỏi:

18/12/2025 178 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.

Cho hàm số bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có đồ thị là một parabol (P) có đỉnh \(S\left( {1; - 2} \right)\) và cắt trục tung tại điểm có tung độ bằng 1. Biết hàm số \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) và đồ thị \(y = F\left( x \right)\) cũng cắt trục tung tại điểm có tung độ bằng 1. Khi đó đồ thị hàm số \(y = F\left( x \right)\) đi qua điểm \(M\left( {12;m} \right)\). Giá trị của \(m\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1309

Trả lời: 1309

Vì hàm số bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có đồ thị là một parabol (P) có đỉnh \(S\left( {1; - 2} \right)\) và cắt trục tung tại điểm có tung độ bằng 1 nên ta có

b2a=1a+b+c=2c=1 a=3b=6c=1.Suy ra fx=3x26x+1

\(F\left( x \right) = \int {\left( {3{x^2} - 6x + 1} \right)dx} = {x^3} - 3{x^2} + x + C\).

\(F\left( 0 \right) = 1\) nên \(C = 1\). Do đó \(F\left( x \right) = {x^3} - 3{x^2} + x + 1\).

Đồ thị hàm số \(y = F\left( x \right)\) đi qua điểm \(M\left( {12;m} \right)\) nên \({12^3} - {3.12^2} + 12 + 1 = m \Leftrightarrow m = 1309\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 0,4

Đường thẳng \(AB\) đi qua điểm \(A\left( {3; - 2;1} \right)\) và nhận \(\overrightarrow {AB} = \left( { - 1; - 3; - 1} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\end{array} \right.\).

Mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 16\) có tâm \(I\left( {2; - 1; - 1} \right)\).

\(\overrightarrow {IM} = \left( { - \frac{8}{9}; - \frac{{16}}{9};\frac{{16}}{9}} \right) = - \frac{8}{9}\left( {1;2; - 2} \right)\).

Mặt phẳng \(\left( P \right)\) đi qua \(M\left( {\frac{{10}}{9}; - \frac{{25}}{9};\frac{7}{9}} \right)\) nhận vectơ \(\overrightarrow n = \left( {1;2; - 2} \right)\) làm vectơ pháp tuyến có phương trình là \(x + 2y - 2z + 6 = 0\).

Giả sử H là giao điểm của \(AB\) và mặt phẳng \(\left( P \right)\) khi đó tọa độ H là nghiệm của hệ

\(\left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\x + 2y - 2z + 6 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\3 - t + 2\left( { - 2 - 3t} \right) - 2\left( {1 - t} \right) + 6 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\5t = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{12}}{5}\\y = - \frac{{19}}{5}\\z = \frac{2}{5}\\t = \frac{3}{5}\end{array} \right.\). Suy ra \(H\left( {\frac{{12}}{5}; - \frac{{19}}{5};\frac{2}{5}} \right)\).

Vậy độ cao của máy bay khi đi xuyên qua đám mây để hạ cánh là 0,4 km.

Lời giải

Trả lời: 810

Phương trình đường cáp là: \(\left\{ \begin{array}{l}x = 10 + 2t\\y = 3 - 2t\\z = t\end{array} \right.\).

Vì cabin dừng ở điểm B có hoành độ \({x_B} = 550\) nên \(10 + 2t = 550 \Leftrightarrow t = 270\).

Do đó \(B\left( {550; - 537;270} \right)\).

Khi đó \(AB = \sqrt {{{\left( {550 - 10} \right)}^2} + {{\left( { - 537 - 3} \right)}^2} + {{270}^2}} = 810\)m.

Câu 4

a) Mặt phẳng \(\left( P \right):3x + y - z - 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 1} \right)\).
Đúng
Sai
b) Tọa độ tổng quát của tâm \(I\)\(\left( {t; - 1 + 2t; - 2 - t} \right)\).
Đúng
Sai
c) \(d\left( {I,\left( P \right)} \right) = 3\).
Đúng
Sai
d) Mặt cầu \(\left( S \right)\) có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 1} \right)^2} = 25\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,4.
Đúng
Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng 0,5.
Đúng
Sai
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,6.
Đúng
Sai
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,4.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Tại thời điểm bắt đầu chuyển động, vật có vận tốc bằng 0. Khi đó, vận tốc của vật được biểu diễn bởi hàm số \(v\left( t \right) = 2\sin t\left( {{\rm{m/s}}} \right)\).
Đúng
Sai
b) Vận tốc của vật tại thời điểm \(t = \frac{\pi }{2}\)\(1\;{\rm{m/s}}\).
Đúng
Sai
c) Quãng đường vật đi được từ thời điểm \(t = 0\)(s) đến thời điểm \(t = \pi \)(s) là 4 m.
Đúng
Sai
d) Quãng đường vật đi được từ thời điểm \(t = \frac{\pi }{2}\left( {\rm{s}} \right)\) đến thời điểm \(t = \frac{{3\pi }}{4}\left( {\rm{s}} \right)\) là 2 m.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP