CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1,41

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1\)\( \Leftrightarrow x + 2y - 2z - 3 = 0\).

Đường thẳng \(MN\) qua \(M\left( {5;2;4} \right)\) và nhận \(\overrightarrow u = - \frac{1}{2}\overrightarrow {MN} = \left( {2;1;3} \right)\) làm vectơ chỉ phương có phương trình là: \(\left\{ \begin{array}{l}x = 5 + 2t\\y = 2 + t\\z = 4 + 3t\end{array} \right.\).

Tọa độ điểm H va chạm của mục tiêu tới mặt phẳng là nghiệm của hệ

x=5+2ty=2+tz=4+3tx+2y2z3=0 x=5+2ty=2+tz=4+3t5+2t+4+2t86t3=0 x=3y=1z=1t=1 . Suy ra H3;1;1

Ta có \(AH = \sqrt {{0^2} + {1^2} + {1^2}} = \sqrt 2 \approx 1,41\).

Câu 2

A. \(\left\{ \begin{array}{l}x = - 2 + t\\y = 1 - 3t\\z = 3\end{array} \right.\).                                
B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 3 - t\\z = 3t\end{array} \right.\).                      
C. \(\left\{ \begin{array}{l}x = 2 + t\\y = - 1 - 3t\\z = 3\end{array} \right.\).        
D. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 - t\\z = 3t\end{array} \right.\).

Lời giải

Đáp án đúng là: B

Đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 3}}{{ - 1}} = \frac{z}{3}\) đi qua điểm \(M\left( {1; - 3;0} \right)\) và có một vectơ chỉ phương \(\vec u = \left( {2; - 1;3} \right)\) nên có phương trình tham số \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 3 - t\\z = 3t\end{array} \right.\).

Câu 4

A. \(\frac{{ - 16}}{{15}}\).                      
B. \(\frac{{14}}{{15}}\). 
C. \( - \frac{{17}}{{15}}\).    
D. \(\frac{8}{{15}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {2\,;1\,;1} \right)\).                 
B. \(\left( {3\,; - 1; - 1} \right)\).                  
C. \(\left( { - 2\,;1\,; - 1} \right)\).                      
D. \(\left( { - 2\,;1\,;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP