Câu hỏi:

24/12/2025 42 Lưu

Trong không gian \(Oxyz\) cho hai đường thẳng \({d_1}:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - m}} = \frac{{z - 2}}{{ - 3}}\), \({d_2}:\frac{{x - 3}}{1} = \frac{y}{1} = \frac{{z - 1}}{1}\). Tìm tất cả giá trị thực của \(m\) để \({d_1}\) vuông góc với \({d_2}\).    

A. \(m = - 1\).         
B. \(m = 1\).            
C. \(m = - 5\).                               
D. \(m = 5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(\overrightarrow {{u_1}} = \left( {2; - m; - 3} \right),\overrightarrow {{u_2}} = \left( {1;1;1} \right)\) lần lượt là vectơ chỉ phương của \({d_1}\)\({d_2}\).

Để \({d_1} \bot {d_2}\) thì \(2.1 + \left( { - m} \right).1 + \left( { - 3} \right).1 = 0\)\( \Leftrightarrow m = - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 595

Ta có \(f\left( x \right) = \frac{{3{x^3} - 2x + 1}}{x} = 3{x^2} - 2 + \frac{1}{x}\).

\(F\left( x \right) = \int {\left( {3{x^2} - 2 + \frac{1}{x}} \right)dx} = {x^3} - 2x + \ln \left| x \right| + C\).

\(F\left( 1 \right) = 3\) nên \(F\left( 1 \right) = {1^3} - 2.1 + \ln \left| 1 \right| + C = 3 \Leftrightarrow C = 4\).

Do đó \(F\left( x \right) = {x^3} - 2x + \ln \left| x \right| + 4\).

Suy ra \(F\left( 5 \right) = {5^3} - 2.5 + \ln \left| 5 \right| + 4 = 119 + \ln 5\).

Suy ra \(a = 119;b = 5\). Vậy \(T = ab = 595\).

Câu 2

A. \(2x + 2y + z + 3 = 0\).                       
B. \(x - 2y - z = 0\).                                                                   
C. \(2x + 2y + z - 3 = 0\).                        
D. \(x - 2y - z - 2 = 0\).

Lời giải

Đáp án đúng là: C

Do mặt phẳng vuông góc với đường thẳng nên VTPT mặt phẳng cần tìm cùng phương với VTCP của đường thẳng \(\Delta \). Suy ra \({\vec n_P} = \left( {2\,;\,2\,;1} \right)\).

Vậy phương trình mặt phẳng cần tìm: \(2\left( {x - 1} \right) + 2\left( {y - 1} \right) + \left( {z + 1} \right) = 0 \Leftrightarrow 2x + 2y + z - 3 = 0\).

Câu 5

a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).
Đúng
Sai
b) Diện tích hình phẳng \(\left( H \right)\)\(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).
Đúng
Sai
c) Diện tích hình phẳng \(\left( H \right)\)\(S = 2\int\limits_{ - 1}^2 {\left( {{x^2} - x - 2} \right)dx} \).
Đúng
Sai
d) Nếu \(\ln S = a\ln b\) (với \(a,b\) là các số nguyên tố) thì \({a^2} + {b^2} = 29\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Vectơ \(\overrightarrow u = \left( { - 2;2;1} \right)\) là một vectơ chỉ phương của \(\Delta \).
Đúng
Sai
b) Góc giữa hai mặt phẳng \(\left( P \right)\)\(\left( {Oyz} \right)\) bằng \(45^\circ \).
Đúng
Sai
c) Đường thẳng đi qua \(N\left( {2;3; - 4} \right)\) và song song với \(\Delta \) có phương trình là \(\frac{{x - 2}}{{ - 2}} = \frac{{y - 3}}{2} = \frac{{z + 4}}{1}.\)
Đúng
Sai
d) Đường thẳng \(d\) vuông góc \(\Delta \) và tạo với \(\left( P \right)\) một góc \(45^\circ \) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 2;4} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{ - 16}}{{15}}\).                      
B. \(\frac{{14}}{{15}}\). 
C. \( - \frac{{17}}{{15}}\).    
D. \(\frac{8}{{15}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP