Bạn Nam tham gia một gian hàng trò chơi dân gian trong hội xuân của trường. Trò chơi có hai lượt chơi. Xác suất để Nam thắng ở lượt chơi thứ nhất là 0,6. Nếu Nam thắng ở lượt chơi thứ nhất thì xác suất Nam thắng ở lượt chơi thứ hai là 0,8. Ngược lại, nếu Nam thua ở lượt chơi thứ nhất thì xác suất Nam thắng ở lượt chơi thứ hai là 0,3. Xét các biến cố:
A: “Nam thắng ở lượt chơi thứ nhất”.
B: “Nam thắng ở lượt chơi thứ hai”.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
a) S, b) S, c) Đ, d) Đ
a) Theo đề, \(P\left( A \right) = 0,6\).
b) \(P\left( {B|A} \right) = 0,8\).
c) \(P\left( {B|\overline A } \right) = 0,3\).
d) Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,6.0,8 + 0,4.0,3 = 0,6\).
Suy ra \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,8}}{{0,6}} = 0,8 = 80\% \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 595
Ta có \(f\left( x \right) = \frac{{3{x^3} - 2x + 1}}{x} = 3{x^2} - 2 + \frac{1}{x}\).
Có \(F\left( x \right) = \int {\left( {3{x^2} - 2 + \frac{1}{x}} \right)dx} = {x^3} - 2x + \ln \left| x \right| + C\).
Vì \(F\left( 1 \right) = 3\) nên \(F\left( 1 \right) = {1^3} - 2.1 + \ln \left| 1 \right| + C = 3 \Leftrightarrow C = 4\).
Do đó \(F\left( x \right) = {x^3} - 2x + \ln \left| x \right| + 4\).
Suy ra \(F\left( 5 \right) = {5^3} - 2.5 + \ln \left| 5 \right| + 4 = 119 + \ln 5\).
Suy ra \(a = 119;b = 5\). Vậy \(T = ab = 595\).
Câu 2
Lời giải
Đáp án đúng là: C
Do mặt phẳng vuông góc với đường thẳng nên VTPT mặt phẳng cần tìm cùng phương với VTCP của đường thẳng \(\Delta \). Suy ra \({\vec n_P} = \left( {2\,;\,2\,;1} \right)\).
Vậy phương trình mặt phẳng cần tìm: \(2\left( {x - 1} \right) + 2\left( {y - 1} \right) + \left( {z + 1} \right) = 0 \Leftrightarrow 2x + 2y + z - 3 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
