Câu hỏi:

24/12/2025 244 Lưu

Trong không gian \(Oxyz\), cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + t\\z = - 1 - 3t\end{array} \right.\) và mặt phẳng \(\left( P \right)\) có phương trình \(2x + y - 3z - 1 = 0\).

a) Một vectơ chỉ phương của \(\Delta \)\(\overrightarrow u = \left( {2;0; - 3} \right)\).
Đúng
Sai
b) Góc giữa \(\Delta \)\(\left( P \right)\)\(150^\circ \).
Đúng
Sai
c) Không có điểm chung nào giữa \(\Delta \)\(\left( P \right)\).
Đúng
Sai
d) Hình chiếu của \(M\left( {1;2; - 1} \right)\) lên \(\left( P \right)\)\(N\left( {1;2;1} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) S, c) S, d) S

a) Một vectơ chỉ phương của \(\Delta \)\(\overrightarrow u = \left( {2;1; - 3} \right)\).

b) \(\overrightarrow u = \left( {2;1; - 3} \right)\) là vectơ chỉ phương của \(\Delta \), \(\overrightarrow n = \left( {2;1; - 3} \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).

Ta có \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {2.2 + 1.1 + \left( { - 3} \right)\left( { - 3} \right)} \right|}}{{14}} = 1\). Suy ra \(\left( {\Delta ,\left( P \right)} \right) = 90^\circ \).

c) Vì \(\Delta \bot \left( P \right)\) nên \(\Delta \)\(\left( P \right)\) có một điểm chung.

d) Ta có \(M \in \Delta \).

Tọa độ điểm \(N\) là nghiệm của hệ x=1+2ty=2+tz=13t2x+y3z1=0 x=1+2ty=2+tz=13t2+4t+2+t+3+9t1=0

\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{7}\\y = \frac{{11}}{7}\\z = \frac{2}{7}\\t = - \frac{3}{7}\end{array} \right.\). Suy ra \(N\left( {\frac{1}{7};\frac{{11}}{7};\frac{2}{7}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{{\pi ^2}}}{4}\).                      
B. \(\frac{{{\pi ^2}}}{2}\).                   
C. \(\frac{\pi }{2}\).                          
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là: B

Ta có \(V = \pi \int\limits_0^\pi {{{\sin }^2}xdx} = \left. {\pi \left( {\frac{x}{2} - \frac{{\sin 2x}}{4}} \right)} \right|_0^\pi = \pi .\frac{\pi }{2} = \frac{{{\pi ^2}}}{2}\).

Câu 2

a) \(P\left( {A|B} \right) = \frac{{P\left( B \right).P\left( {B|A} \right)}}{{P\left( A \right)}}\).
Đúng
Sai
b) Xác suất để người đi xét nghiệm bị bệnh là 1%.
Đúng
Sai
c) Xác suất để người đó có kết quả dương tính khi người đó không bị bệnh là 8%.
Đúng
Sai
d) Một người đi xét nghiệm và có kết quả xét nghiệm dương tính. Xác suất để người đó bị bệnh lớn hơn xác suất để người đó không bị bệnh.
Đúng
Sai

Lời giải

a) S, b) Đ, c) Đ, d) S

A là biến cố “Người được xét nghiệm bị bệnh”,

B là biến cố “Người được xét nghiệm có kết quả xét nghiệm dương tính”.

a) \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\).

b) Theo đề bài ta có \(P\left( A \right) = 1\% = 0,01\).

c) \(P\left( {B|A} \right) = 0,96;P\left( {\overline B |\overline A } \right) = 0,92 \Rightarrow P\left( {B|\overline A } \right) = 1 - 0,92 = 0,08\).

d) Cần tính \(P\left( {A|B} \right)\)\(P\left( {\overline A |B} \right)\).

Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,01.0,96 + 0,99.0,08 = 0,0888\).

Theo công thức Bayes, \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,01.0,96}}{{0,0888}} = \frac{4}{{37}}\).

\(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,99.0,08}}{{0,0888}} = \frac{{33}}{{37}}\).

\(\frac{4}{{37}} < \frac{{33}}{{37}}\) nên xác suất để người đó bị bệnh nhỏ hơn xác suất để người đó không bị bệnh.

Câu 4

a) Mặt cầu \(\left( S \right)\) có tâm \(I\left( {2; - 1;1} \right)\), bán kính \(R = 3\).
Đúng
Sai
b) Điểm \(M\left( {1;3;5} \right)\) nằm trong mặt cầu.
Đúng
Sai
c) Mặt phẳng \(\left( P \right):x + 2y - 2z + 8 = 0\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn có bán kính \(r = 2\).
Đúng
Sai
d) Đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = t\\z = 3 - t\end{array} \right.\) cắt mặt cầu \(\left( S \right)\) tại hai điểm \(A,B\). Khi đó diện tích tam giác \(IAB\)\(\frac{{\sqrt {182} }}{3}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP