Câu hỏi:

24/12/2025 163 Lưu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\left[ { - 2;3} \right]\)\(f'\left( x \right)\) có đồ thị như hình vẽ sau:

Cho hàm số \(y = f\left( x \right)\) (ảnh 1)

Biết \(\int\limits_{ - 2}^1 {f'\left( x \right)dx} = 3\) và diện tích phần gạch sọc trong hình vẽ \(S = \frac{5}{3}\). Giá trị \(f\left( 3 \right) - f\left( { - 2} \right)\) bằng bao nhiêu? (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1,3

Trả lời: 1,3

Ta có \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \int\limits_{ - 2}^1 {f'\left( x \right)dx} + \int\limits_1^3 {f'\left( x \right)dx} = 3 - \int\limits_1^3 {\left| {f'\left( x \right)} \right|dx} \)\( = 3 - \frac{5}{3} = \frac{4}{3}\).

\(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_{ - 2}^3 = f\left( 3 \right) - f\left( { - 2} \right)\).

Do đó \(f\left( 3 \right) - f\left( { - 2} \right) \approx 1,3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{{\pi ^2}}}{4}\).                      
B. \(\frac{{{\pi ^2}}}{2}\).                   
C. \(\frac{\pi }{2}\).                          
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là: B

Ta có \(V = \pi \int\limits_0^\pi {{{\sin }^2}xdx} = \left. {\pi \left( {\frac{x}{2} - \frac{{\sin 2x}}{4}} \right)} \right|_0^\pi = \pi .\frac{\pi }{2} = \frac{{{\pi ^2}}}{2}\).

Câu 2

a) Một vectơ chỉ phương của \(\Delta \)\(\overrightarrow u = \left( {2;0; - 3} \right)\).
Đúng
Sai
b) Góc giữa \(\Delta \)\(\left( P \right)\)\(150^\circ \).
Đúng
Sai
c) Không có điểm chung nào giữa \(\Delta \)\(\left( P \right)\).
Đúng
Sai
d) Hình chiếu của \(M\left( {1;2; - 1} \right)\) lên \(\left( P \right)\)\(N\left( {1;2;1} \right)\).
Đúng
Sai

Lời giải

a) S, b) S, c) S, d) S

a) Một vectơ chỉ phương của \(\Delta \)\(\overrightarrow u = \left( {2;1; - 3} \right)\).

b) \(\overrightarrow u = \left( {2;1; - 3} \right)\) là vectơ chỉ phương của \(\Delta \), \(\overrightarrow n = \left( {2;1; - 3} \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).

Ta có \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {2.2 + 1.1 + \left( { - 3} \right)\left( { - 3} \right)} \right|}}{{14}} = 1\). Suy ra \(\left( {\Delta ,\left( P \right)} \right) = 90^\circ \).

c) Vì \(\Delta \bot \left( P \right)\) nên \(\Delta \)\(\left( P \right)\) có một điểm chung.

d) Ta có \(M \in \Delta \).

Tọa độ điểm \(N\) là nghiệm của hệ x=1+2ty=2+tz=13t2x+y3z1=0 x=1+2ty=2+tz=13t2+4t+2+t+3+9t1=0

\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{7}\\y = \frac{{11}}{7}\\z = \frac{2}{7}\\t = - \frac{3}{7}\end{array} \right.\). Suy ra \(N\left( {\frac{1}{7};\frac{{11}}{7};\frac{2}{7}} \right)\).

Câu 3

a) \(P\left( {A|B} \right) = \frac{{P\left( B \right).P\left( {B|A} \right)}}{{P\left( A \right)}}\).
Đúng
Sai
b) Xác suất để người đi xét nghiệm bị bệnh là 1%.
Đúng
Sai
c) Xác suất để người đó có kết quả dương tính khi người đó không bị bệnh là 8%.
Đúng
Sai
d) Một người đi xét nghiệm và có kết quả xét nghiệm dương tính. Xác suất để người đó bị bệnh lớn hơn xác suất để người đó không bị bệnh.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Mặt cầu \(\left( S \right)\) có tâm \(I\left( {2; - 1;1} \right)\), bán kính \(R = 3\).
Đúng
Sai
b) Điểm \(M\left( {1;3;5} \right)\) nằm trong mặt cầu.
Đúng
Sai
c) Mặt phẳng \(\left( P \right):x + 2y - 2z + 8 = 0\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn có bán kính \(r = 2\).
Đúng
Sai
d) Đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = t\\z = 3 - t\end{array} \right.\) cắt mặt cầu \(\left( S \right)\) tại hai điểm \(A,B\). Khi đó diện tích tam giác \(IAB\)\(\frac{{\sqrt {182} }}{3}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP