Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo mét) vào một căn nhà sao cho nền nhà thuộc mặt phẳng \(\left( {Oxy} \right)\), người ta coi mỗi mái nhà là một phần của mặt phẳng và thấy ba vị trí \(A,B,C\) ở mái nhà bên phải lần lượt có tọa độ \(\left( {2;\,0;\,4} \right)\), \(\left( {4;\,0;\,3} \right)\) và \(\left( {4;\,9;\,3} \right)\). Góc giữa mái nhà bên phải và nền nhà bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?
Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo mét) vào một căn nhà sao cho nền nhà thuộc mặt phẳng \(\left( {Oxy} \right)\), người ta coi mỗi mái nhà là một phần của mặt phẳng và thấy ba vị trí \(A,B,C\) ở mái nhà bên phải lần lượt có tọa độ \(\left( {2;\,0;\,4} \right)\), \(\left( {4;\,0;\,3} \right)\) và \(\left( {4;\,9;\,3} \right)\). Góc giữa mái nhà bên phải và nền nhà bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 27
Ta có \(\overrightarrow {AB} = \left( {2;0; - 1} \right)\), \(\overrightarrow {AC} = \left( {2;9; - 1} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {9;0;18} \right) = 9\left( {1;0;2} \right)\).
Mặt phẳng \((ABC)\) và \((Oxy)\) có vectơ pháp tuyến lần lượt là:\({\vec n_1} = (1;0;2)\),\({\vec n_2} = (0;0;1)\).
Gọi \(\alpha \) là góc giữa mặt phẳng mái nhà bên phải và nền nhà.
Ta có \(\cos \alpha = \left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right| = \frac{2}{{\sqrt 5 }}\). Suy ra \(\alpha \approx 27^\circ \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Ta có \(V = \pi \int\limits_0^3 {{{\left( {\frac{1}{3}{x^3} - {x^2}} \right)}^2}dx} = \frac{{81\pi }}{{35}}\).
Lời giải
Trả lời: 0,3
Xét các biến cố: \(A\): “Lần thứ nhất rút ra được thẻ ghi số nguyên tố”;
\(B\): “Lần thứ hai rút được thẻ ghi số nguyên tố”.
Từ \(1\) đến \(40\) có \(12\) số nguyên tố nên \(P\left( A \right) = \frac{{12}}{{40}} = 0,3\) và \(P\left( {\overline A } \right) = 1 - 0,3 = 0,7\).
Vì rút không hoàn lại nên \(P\left( {B|A} \right) = \frac{{11}}{{39}}\), \[P\left( {B|\overline A } \right) = \frac{{12}}{{39}} = \frac{4}{{13}}\].
Theo công thức xác suất toàn phần, ta có:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,3.\frac{{11}}{{39}} + 0,7.\frac{4}{{13}} = 0,3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
