Trong không gian \[Oxyz\], đài kiểm soát không lưu sân bay có tọa độ \(O\left( {0;0;0} \right)\), đơn vị trên mỗi trục tính theo kilômét. Một máy bay chuyển động hướng về đài kiểm soát không lưu, bay qua hai vị trí \(A\left( { - 500; - 250;150} \right),\,B\left( { - 200; - 200;100} \right).\)Khi máy bay ở gần đài kiểm soát nhất, tọa độ của vị trí máy bay là \(\left( {a;b;c} \right)\). Giá trị của biểu thức \(\frac{{\left( { - 3a - b - c} \right)}}{{10}}\) là bao nhiêu (làm tròn kết quả đến hàng đơn vị)?
Trong không gian \[Oxyz\], đài kiểm soát không lưu sân bay có tọa độ \(O\left( {0;0;0} \right)\), đơn vị trên mỗi trục tính theo kilômét. Một máy bay chuyển động hướng về đài kiểm soát không lưu, bay qua hai vị trí \(A\left( { - 500; - 250;150} \right),\,B\left( { - 200; - 200;100} \right).\)Khi máy bay ở gần đài kiểm soát nhất, tọa độ của vị trí máy bay là \(\left( {a;b;c} \right)\). Giá trị của biểu thức \(\frac{{\left( { - 3a - b - c} \right)}}{{10}}\) là bao nhiêu (làm tròn kết quả đến hàng đơn vị)?
Quảng cáo
Trả lời:
Đáp án:
Trả lời: −180
Vectơ \(\overrightarrow {AB} = \left( {300;50; - 50} \right)\) nên \(\overrightarrow u = \left( {6;1; - 1} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\). Phương trình đường thẳng \(AB\) là: \(\frac{{x + 500}}{6} = \frac{{y + 250}}{1} = \frac{{z - 150}}{{ - 1}}\).
Gọi \(H\) là hình chiếu của điểm \(O\) trên đường thẳng \(AB\)thì \(OH\) là khoảng cách ngắn nhất giữa máy bay và đài kiểm soát. Khi đó \(H\left( {6t - 500;t - 250; - t + 150} \right)\).
Ta có \(\overrightarrow {OH} .\overrightarrow u = \left( {6t - 500} \right).6 + t - 250 + \left( { - t + 150} \right).\left( { - 1} \right) = 0 \Leftrightarrow t = \frac{{1700}}{9}\).
Suy ra toạ độ của vị trí máy bay khi đó là \(\left( {\frac{{1900}}{3}; - \frac{{550}}{9}; - \frac{{350}}{9}} \right)\).
Vậy \(\frac{{ - 3a - b - c}}{{10}} = - 180.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 0,3
Xét các biến cố: \(A\): “Lần thứ nhất rút ra được thẻ ghi số nguyên tố”;
\(B\): “Lần thứ hai rút được thẻ ghi số nguyên tố”.
Từ \(1\) đến \(40\) có \(12\) số nguyên tố nên \(P\left( A \right) = \frac{{12}}{{40}} = 0,3\) và \(P\left( {\overline A } \right) = 1 - 0,3 = 0,7\).
Vì rút không hoàn lại nên \(P\left( {B|A} \right) = \frac{{11}}{{39}}\), \[P\left( {B|\overline A } \right) = \frac{{12}}{{39}} = \frac{4}{{13}}\].
Theo công thức xác suất toàn phần, ta có:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,3.\frac{{11}}{{39}} + 0,7.\frac{4}{{13}} = 0,3\].
Câu 2
Lời giải
Đáp án đúng là: B
Ta có \(V = \pi \int\limits_0^3 {{{\left( {\frac{1}{3}{x^3} - {x^2}} \right)}^2}dx} = \frac{{81\pi }}{{35}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
