Câu hỏi:

19/12/2025 30 Lưu

Một cửa hàng ăn vặt bán trà sữa và bánh ngọt. Mỗi ly trà sữa lãi 7 nghìn đồng, mỗi cái bánh ngọt lãi 5 nghìn đồng. Giả sử cửa hàng bán \(x\)ly trà sữa và \(y\) cái bánh ngọt trong một ngày. Bất phương trình biểu thị mỗi liên hệ giữa \(x\) và \(y\) để cửa hàng đo thu được số lãi lớn hơn 350 nghìn đồng trong một ngày có dạng \(7x + by > c\)(\(b,c\) là các số nguyên dương). Khi đó, giá trị \(S = 3b + 4c\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1415

Lời giải

Số tiền lãi khi bán \(x\) ly trà sữa là \(7x\) nghìn đồng;

Số tiền lãi khi bán \(y\) cái bánh ngoạt là \(5y\) nghìn đồng.

Theo đề ta có \(7x + 5y \ge 350\).

Suy ra \(b = 5;c = 350\). Khi đó \(S = 3b + 4c = 3 \cdot 5 + 4 \cdot 350 = 1415\).

Trả lời: 1415.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) Miền nghiệm \(D\) của hệ bất phương trình trên là một tứ giác.

Đúng
Sai
d) Giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) =  - x + y\) trên miền D xác định bởi hệ trên bằng 1.
Đúng
Sai

Lời giải

Lời giải

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l} - 2 \cdot 1 + 3 \le 2\\ - 1 + 2 \cdot 3 \ge 4\\1 + 3 \le 5\end{array} \right.\) (đúng).

Vậy cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

c) Miền nghiệm D của hệ là miền tam giác \(ABC\), kể cả các cạnh (phần tô màu) với \(A\left( {0;2} \right),B\left( {2;3} \right),C\left( {1;4} \right)\)

Cho hệ bất phương trình  - 2x + y =< 2;  - x + 2y >= 4; x + y =< 5 có miền nghiệm là miền D. (ảnh 1)

d) Biểu thức \(F\left( {x,y} \right) =  - x + y\) đạt giá trị nhỏ nhất tại một trong 3 điểm \(A\left( {0;2} \right),B\left( {2;3} \right),C\left( {1;4} \right)\).

Khi đó \(F\left( {0,2} \right) = 0 + 2 = 2\); \(F\left( {2,3} \right) =  - 2 + 3 = 1\); \(F\left( {1,4} \right) =  - 1 + 4 = 3\).

Vậy giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) =  - x + y\) trên miền D xác định bởi hệ trên bằng 1.

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Câu 2

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.

Đúng
Sai

c) Miền nghiệm của hệ bất phương trình là một tam giác.

Đúng
Sai
d) Miền nghiệm của hệ bất phương trình là một đa giác có diện tích bằng 5.
Đúng
Sai

Lời giải

Lời giải

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay tọa độ điểm \(\left( {1;3} \right)\) vào hệ ta được \(\left\{ \begin{array}{l}3 \cdot 1 + 3 \le 6\\1 + 3 \le 4\\1 \ge 0,3 \ge 0\end{array} \right.\) (đúng).

Vậy điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của bất phương trình.

c) Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;4} \right),B\left( {1;3} \right),C\left( {2;0} \right)\).

Cho hệ bất phương trình 3x + y =< 6; x + y =< 4; x,y >= 0. (ảnh 1)

d) \({S_{OABC}} = {S_{AHB}} + {S_{OHBK}} + {S_{BKC}}\)\( = \frac{1}{2} \cdot 1 \cdot 1 + 1 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 1 = 5\).

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Câu 3

a) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) \(\left( {1; - 1} \right)\)là một nghiệm của hệ bất phương trình trên.

Đúng
Sai
d) Biểu thức \(L = y - x\) đạt giá trị lớn nhất là \(a\) và đạt giá trị nhỏ nhất là \(b\). Khi đó \(a + b = \frac{7}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Có 2 giá trị nguyên của \(m\) để \(\left( {x;y} \right) = \left( {m;1} \right)\) là nghiệm của hệ bất phương trình trên.

Đúng
Sai

b) \(\left( {x;y} \right) = \left( {1;2} \right)\) là nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) Miền nghiệm của hệ bất phương trình trên là một miền tam giác tô màu dưới đây

 Cho hệ bất phương trình bậc nhất hai ẩn 2x + y >= 3; x - y >= 0; y >= 0. (ảnh 2)

Đúng
Sai

d) Với \(x,y\) thỏa mãn hệ bất phương trình trên, giá trị lớn nhất của hàm \(F = 2x + 3y\) bằng 5.

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Gọi \(x,y\) (đơn vị: triệu đồng) lần lượt là số tiền bác Minh đầu tư vào khoản X và khoản Y ta có hệ bất phương trình \(\left\{ \begin{array}{l}x + y \le 240\\y \ge 40\\x \ge 3y\end{array} \right.\).

Đúng
Sai

b) Miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho là một tứ giác.

Đúng
Sai

c) Điểm \(C\left( {200;40} \right)\) không thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.

Đúng
Sai
d) Điểm \(B\left( {180;60} \right)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP