Câu hỏi:

19/12/2025 11 Lưu

Một gia đình chăn nuôi dự định trộn hai loại thức ăn gia cầm X và Y để tạo thành thức ăn hỗn hợp cho gia cầm. Giá một bao loại X là 700 nghìn đồng, giá một bao loại Y là 600 nghìn đồng. Mỗi bao loại X chứa 2 đơn vị chất dinh dưỡng A, 4 đơn vị chất dinh dưỡng B và 4 đơn vị chất dinh dưỡng C. Mỗi bao loại Y chứa 1 đơn vị chất dinh dưỡng A, 3 đơn vị chất dinh dưỡng B và 5 đơn vị dinh dưỡng C. Tìm chi phí nhỏ nhất để mua hai loại thức ăn gia cầm X và Y sao cho hỗn hợp thu được chứa tối thiểu 12 đơn vị chất dinh dưỡng A, 32 đơn vị dinh dưỡng B và 40 đơn vị chất dinh dưỡng C.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Gọi \(x,y\left( {x,y \in \mathbb{N}} \right)\) lần lượt là số bao thức ăn loại X, Y gia đình cần mua.

Số đơn vị chất dinh dưỡng A trong hỗn hợp thức ăn trên là \(2x + y \ge 12\).

Số đơn vị chất dinh dưỡng B trong hỗn hợp thức ăn trên là \(4x + 3y \ge 32\).

Số đơn vị chất dinh dưỡng C trong hỗn hợp thức ăn trên là \(4x + 5y \ge 40\).

Từ đó ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \ge 12\\4x + 3y \ge 32\\4x + 5y \ge 40\end{array} \right.\).

Chi phí cần mua hai loại thức ăn trên là \(F\left( {x,y} \right) = 700x + 600y\) (nghìn đồng).

Ta cần tìm giá trị nhỏ nhất của \(F\left( {x,y} \right)\) khi \(\left( {x,y} \right)\) thỏa mãn hệ bất phương trình trên.

Miền nghiệm của hệ bất phương trình trên là miền có các đỉnh \(A\left( {0;12} \right),B\left( {2;8} \right),C\left( {5;4} \right),D\left( {10;0} \right)\).

Tìm chi phí nhỏ nhất để mua hai loại thức ăn gia cầm X và Y sao cho hỗn hợp thu được chứa tối thiểu 12 đơn vị chất dinh dưỡng A, 32 đơn vị dinh dưỡng B và 40 đơn vị chất dinh dưỡng C. (ảnh 1)

Khi đó \(F\left( {0;12} \right) = 7200\) nghìn đồng;

\(F\left( {2;8} \right) = 6200\) nghìn đồng;

\(F\left( {5;4} \right) = 5900\) nghìn đồng;

\(F\left( {10;0} \right) = 7000\) nghìn đồng.

Vậy gia đình cần mua 5 bao thức ăn loại X và 4 bao thức ăn loại Y để chi phí mua thức ăn nhỏ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Miền nghiệm của hệ bất phương trình là miền tam giác \(ABC\), kể cả các cạnh (phần tô màu) như hình vẽ với \(A\left( { - 5; - 1} \right),B\left( { - 1; - 2} \right),C\left( {5;4} \right)\).

Cho biểu thức T = 3x - 2y - 4 với x và y thỏa mãn hệ bất phương trình  x - y - 1 =< 0; x + 4y + 9 >= 0; x - 2y + 3 >= 0. Biết T đạt giá trị nhỏ nhất khi x = x0 và y = y0. Tính x0^2 + y0^2. (ảnh 1)

Biểu thức \(T = 3x - 2y - 4\) đạt giá trị nhỏ nhất tại một trong ba điểm \(A\left( { - 5; - 1} \right),B\left( { - 1; - 2} \right),C\left( {5;4} \right)\).

Ta có \(T\left( { - 5, - 1} \right) = 3 \cdot \left( { - 5} \right) - 2 \cdot \left( { - 1} \right) - 4 =  - 17\); \(T\left( { - 1, - 2} \right) = 3 \cdot \left( { - 1} \right) - 2 \cdot \left( { - 2} \right) - 4 =  - 3\);

\(T\left( {5,4} \right) = 3 \cdot 5 - 2 \cdot 4 - 4 = 3\).

Vậy giá trị nhỏ nhất của T là \( - 17\) khi \(x =  - 5;y =  - 1\).

Suy ra \(x_0^2 + y_0^2 = 26\).

Trả lời: 26.

Câu 2

a) Gọi \(x,y\) (đơn vị: triệu đồng) lần lượt là số tiền bác Minh đầu tư vào khoản X và khoản Y ta có hệ bất phương trình \(\left\{ \begin{array}{l}x + y \le 240\\y \ge 40\\x \ge 3y\end{array} \right.\).

Đúng
Sai

b) Miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho là một tứ giác.

Đúng
Sai

c) Điểm \(C\left( {200;40} \right)\) không thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.

Đúng
Sai
d) Điểm \(B\left( {180;60} \right)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.
Đúng
Sai

Lời giải

Lời giải

a) Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x + y \le 240\\y \ge 40\\x \ge 3y\end{array} \right.\).

b) Miền nghiệm của bất phương trình là miền tam giác \(ABC\), kể cả các cạnh (phần tô màu) như hình.

Bác Minh có kế hoạch đầu tư không quá 240 triệu đồng vào hai khoản X và khoản Y. Để đạt được lợi nhuận thì khoản Y phải đầu tư ít nhất 40 triệu đồng và số tiền đầu tư cho khoản X phải ít nhất gấp ba lần số tiền cho khoản Y. Khi đó: (ảnh 1)

c) Thay tọa độ điểm \(C\left( {200;40} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l}200 + 40 \le 240\\40 \ge 40\\200 \ge 3 \cdot 40\end{array} \right.\) (đúng).

Vậy điểm \(C\left( {200;40} \right)\)thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.

d) Dựa vào miền nghiệm của hệ bất phương trình câu b, ta có điểm \(B\left( {180;60} \right)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.

Đáp án: a) Đúng;     b) Sai;    c) Sai;    d) Đúng.

Câu 3

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Điểm \(\left( {1;3} \right)\) thuộc miền nghiệm của hệ.

Đúng
Sai

c) Miền nghiệm của hệ bất phương trình là một tam giác.

Đúng
Sai
d) Miền nghiệm của hệ bất phương trình là một đa giác có diện tích bằng 5.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}2x + y + 2 \ge 0\\5x + 2y + 3 > 0\end{array} \right.\). 

B. \(\left\{ \begin{array}{l}x + {y^2} = 3\\x - 5y - 3 = 0\end{array} \right.\). 
C. \(\left\{ \begin{array}{l} - 2x + y > 2\\x + y < 2\end{array} \right.\). 
D. \(\left\{ \begin{array}{l}y - 2 < 0\\x + 5 \ge 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP