Ông An muốn xây một bể nước dạng hình hộp chữ nhật có nắp với dung tích 3 mét khối. Đáy bể là một hình chữ nhật có chiều dài gấp đôi chiều rộng. Giá thuê nhân công để xây bể là 500000 đồng cho mỗi mét vuông. Hỏi chi phí thấp nhất ông An cần bỏ ra để xây bể nước là bao nhiêu?
Ông An muốn xây một bể nước dạng hình hộp chữ nhật có nắp với dung tích 3 mét khối. Đáy bể là một hình chữ nhật có chiều dài gấp đôi chiều rộng. Giá thuê nhân công để xây bể là 500000 đồng cho mỗi mét vuông. Hỏi chi phí thấp nhất ông An cần bỏ ra để xây bể nước là bao nhiêu?
Quảng cáo
Trả lời:
Đáp án
6490123 đồng.
Giải thích

Gọi \(x\,\,(x > 0)\) là chiều rộng của đáy bể, suy ra chiều dài của đáy bể là \(2x\) và gọi \(h\) là chiều cao của bể. Diện tích xây dựng là diện tích toàn phần của bể \(S = 2.2xh + 2.xh + 2.2x.x = 4{x^2} + 6xh\) (1)
Ta có \(V = 3 = 2x.x.h \Rightarrow h = \frac{3}{{2{x^2}}}\,\,\left( 2 \right)\).
Thay \(\left( 2 \right)\) vào \(\left( 1 \right)\), ta được hàm \(S\left( x \right) = 4{x^2} + \frac{9}{x}\), với \(x > 0\)
Ta có \(S\left( x \right) = 4{x^2} + \frac{9}{x} = 4{x^2} + \frac{9}{{2x}} + \frac{9}{{2x}} \ge 3\sqrt[3]{{4{x^2}.\frac{9}{{2x}}.\frac{9}{{2x}}}} = 3\sqrt[3]{{81}}\).
Dấu "\( = \)" xảy ra khi và chỉ khi \(4{x^2} = \frac{9}{{2x}} \Leftrightarrow x = \frac{{\sqrt[3]{9}}}{2}\).
Khi đó chi phí thấp nhất là \(3\sqrt[3]{{81}} \times 500000 \approx 6490123\) (đồng).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
4
Giải thích
Chọn giá trị đại diện cho các nhóm số liệu ta có:
|
Chi phí (triệu đồng/người) |
\(\left[ {5;7,5} \right)\) |
\(\left[ {7,5;10} \right)\) |
\(\left[ {10;12,5} \right)\) |
\(\left[ {12,5;15} \right)\) |
\(\left[ {15;17,5} \right)\) |
\(\left[ {17,5;20} \right)\) |
|
Giá trị đại diện |
6,25 |
8,75 |
11,25 |
13,75 |
16,25 |
18,75 |
|
Số khách hàng |
24 |
20 |
21 |
15 |
11 |
9 |
Chi phí dự kiến trung bình của 100 khách hàng là:
\(\overline x = \frac{1}{{100}}\left( {24.6,25 + 20.8,75 + 21.11,25 + 15.13,75 + 11.16,25 + 9.18,75} \right) = 11,15\) (triệu đồng).
Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm về chi phí dự kiến là:
\({s^2} = \frac{1}{{100}}\left[ {24{{(6,25 - 11,15)}^2} + 20{{(8,75 - 11,15)}^2} + \ldots + 9{{(18,75 - 11,15)}^2}} \right] = 15,99\) và \(s \approx 4\).
Câu 2
Lời giải
Đáp án
\(S = 1\).

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

