Câu hỏi:

22/12/2025 3 Lưu

Một căn bệnh có 1% dân số mắc phải. Một phươn pgháp chuẩn đoán được phát triển có tỷ lệ chính xác là 99%. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính 99% số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng 99 trong 100 trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?

Đáp án:  ____

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 0,5

Đáp án

0,5

Giải thích

Gọi \(A\) là biến cố "người đó mắc bệnh"

Gọi \(B\) là biến cố "kết quả kiểm tra người đó là dương tính (bị bệnh)"

Ta cần tính \(P\left( {A\mid B} \right)\)

Với \(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( A \right).P\left( {B\mid A} \right) + P\left( {\overline A } \right).P\left( {B\mid \overline A } \right)}}\)

Ta có:

Xác suất để người đó mắc bệnh khi chưa kiểm tra: \(P\left( A \right) = 1\)

Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra: \(P\left( {\overline A } \right) = 1 - 0,01 = 0,99\)

Xác suất kết quả dương tính nếu người đó mắc bệnh là: \(P\left( {B\mid A} \right) = 99\)

Xác suất kết quả dương tính nếu người đó không mắc bệnh là: \(P\left( {B\mid \overline A } \right) = 1 - 0,99 = 0,01\)

\(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B\mid \overline A } \right)}} = \frac{{0,01.0,99}}{{0,01.0,99 + 0,99.0,01}} = 0,5\)

Xác suất để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là 0,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án

4

Giải thích

Chọn giá trị đại diện cho các nhóm số liệu ta có:

Chi phí (triệu đồng/người)

\(\left[ {5;7,5} \right)\)

\(\left[ {7,5;10} \right)\)

\(\left[ {10;12,5} \right)\)

\(\left[ {12,5;15} \right)\)

\(\left[ {15;17,5} \right)\)

\(\left[ {17,5;20} \right)\)

Giá trị đại diện

6,25

8,75

11,25

13,75

16,25

18,75

Số khách hàng

24

20

21

15

11

9

Chi phí dự kiến trung bình của 100 khách hàng là:

\(\overline x  = \frac{1}{{100}}\left( {24.6,25 + 20.8,75 + 21.11,25 + 15.13,75 + 11.16,25 + 9.18,75} \right) = 11,15\) (triệu đồng).

Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm về chi phí dự kiến là:

\({s^2} = \frac{1}{{100}}\left[ {24{{(6,25 - 11,15)}^2} + 20{{(8,75 - 11,15)}^2} +  \ldots  + 9{{(18,75 - 11,15)}^2}} \right] = 15,99\)\(s \approx 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{2}\).      
B. 1.      
C. \( + \infty \).           
D. -1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(D = \left( { - \infty ; - 2\left] \cup \right[0; + \infty } \right)\). 
B. \(D = \left( { - 2;0} \right)\).
C. \(\mathbb{R}\backslash \left\{ { - 2;0} \right\}\).    
D. \(\left( { - \infty ; - 2} \right) \cup \left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP