Câu hỏi:

22/12/2025 68 Lưu

Một vật chuyển động theo quy luật \(s =  - \frac{1}{2}{t^3} + 9{t^2}\) với \(t\) (giây) là khoảng thời gian tính từ lúc bắt đầu chuyển động và \(s\) (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian \[10\] giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

A. \[216{\rm{ }}\left( {{\rm{m/s}}} \right)\]. 

B. \[30{\rm{ }}\left( {{\rm{m/s}}} \right)\].      
C. \[400{\rm{ }}\left( {{\rm{m/s}}} \right)\]. 
D. \[54\,\,\left( {{\rm{m/s}}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Có \(v\left( t \right) = s'\left( t \right) =  - \frac{3}{2}{t^2} + 18t\)\( =  - \frac{3}{2}\left( {{t^2} - 12t} \right)\)

\( =  - \frac{3}{2}\left( {{t^2} - 12t + 36 - 36} \right)\)\( =  - \frac{3}{2}{\left( {t - 6} \right)^2} + 54 \le 54\).

Vậy vận tốc lớn nhất của vật là 54 m/s.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(SA \bot \left( {ABCD} \right)\).
B. \(SO \bot \left( {ABCD} \right)\).
C. \(SC \bot \left( {ABCD} \right)\).
D. \(SB \bot \left( {ABCD} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, SA = SC,SB = SD. Trong các khẳng định sau khẳng định nào đúng? (ảnh 1)

Vì \(O\) là tâm của hình bình hành \(ABCD\) nên \(O\) là trung điểm của \(AC,BD\).

Vì \(SA = SC\) nên \(\Delta SAC\) cân tại \(S\), \(O\) là trung điểm của \(AC\) nên \(SO \bot AC\) (1).

Tương tự \(SO \bot BD\)(2).

Từ (1) và (2), suy ra \(SO \bot \left( {ABCD} \right)\).

Câu 2

A. \(\frac{{a\sqrt 2 }}{2}.\)                 
B. \(a.\)                  
C. \(a\sqrt 2 .\) 
D. \(2a.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính khoảng cách giữa hai đường thẳng AB' và CD'. (ảnh 1)

Có \(\left( {ABB'A'} \right)//\left( {DCC'D'} \right)\).

\(\left. \begin{array}{l}CD'//\left( {ABB'A'} \right)\\AB' \subset \left( {ABB'A'} \right)\end{array} \right\} \Rightarrow d\left( {AB',CD'} \right) = d\left( {CD',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CB = a\).

Câu 3

A. \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\). 
B. \(P\left( {A \cup B} \right) = P\left( A \right).P\left( B \right)\).
C. \(P\left( {A \cup B} \right) = P\left( A \right) - P\left( B \right)\).  
D. \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(90^\circ \).
B. \(60^\circ \).
C. \(30^\circ \).
D. \(45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(A\) và \(B\) là hai biến cố độc lập.

B. \(A \cap B\) là biến cố: “Tổng số chấm trên mặt xuất hiện của hai lần gieo bằng \(12\)”.

C. \(A \cup B\) là biến cố: “Ít nhất một lần xuất hiện mặt \(6\) chấm”.

D. \(A\) và \(B\) là hai biến cố xung khắc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP