Câu hỏi:

23/12/2025 45 Lưu

Cho hình lập phương \[ABCD.A'B'C'D'\] cạnh \(a\). Tính khoảng cách giữa hai đường thẳng \(AB'\) và \(CD'\).

A. \(\frac{{a\sqrt 2 }}{2}.\)
B. \(a.\)  
C.\(a\sqrt 2 .\) 
D.\(2a.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính khoảng cách giữa hai đường thẳng AB' và CD'. (ảnh 1)

Có \(\left( {ABB'A'} \right)//\left( {DCC'D'} \right)\).

\(\left. \begin{array}{l}CD'//\left( {ABB'A'} \right)\\AB' \subset \left( {ABB'A'} \right)\end{array} \right\} \Rightarrow d\left( {AB',CD'} \right) = d\left( {CD',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CB = a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cho tứ diện S.ABC có ABC là tam giác vuông tại B và SA vuông góc (ABC). Gọi AH là đường cao của tam giác SAB, thì khẳng định nào sau đây đúng nhất. (ảnh 1)

Vì \[SA \bot \left( {ABC} \right)\] \( \Rightarrow SA \bot BC\) mà \(BC \bot AB\) \( \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\).

Lại có \(AH \bot SB\). Do đó \(AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\).

Câu 2

A. \[90^\circ .\]  
B. \[45^\circ .\]  
C. \[60^\circ .\]
D. \[30^\circ .\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng AC và B'D bằng (ảnh 1)

Có \(ABCD.A'B'C'D'\) là hình lập phương nên ta có \(DD' \bot \left( {ABCD} \right) \Rightarrow DD' \bot AC\).

Mà \(AC \bot BD\) nên \(AC \bot \left( {DBB'D'} \right)\)\( \Rightarrow AC \bot B'D\).

Câu 5

A. \(P = {x^{\frac{4}{5}}}\). 
B. \(P = {x^9}\). 
C. \(P = {x^{20}}\).
D. \(P = {x^{\frac{5}{4}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = 3\).
B. \(x = 2\).  
C. \(x = 1\). 
D. \(x =  - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP