Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 1,BC = 2\), \(AA' = 2\) (tham khảo hình bên). Khoảng cách giữa hai đường thẳng \(AD'\) và \(DC'\) bằng
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có \(AB//D'C'\) và \(AB = D'C'\) (cùng song song và bằng \(CD\)).
Do đó \(ABC'D'\) là hình bình hành. Suy ra \(AD'//BC'\)\( \Rightarrow AD'//\left( {BC'D} \right)\).
Do đó \(d\left( {AD',DC'} \right) = d(AD',\left( {BC'D} \right)) = d\left( {A,\left( {BC'D} \right)} \right) = d\left( {C,\left( {BC'D} \right)} \right) = h\).
Áp dụng kết quả bài 7.7 SBT tập 2. Ta có:
\(\frac{1}{{{h^2}}} = \frac{1}{{C{D^2}}} + \frac{1}{{C{B^2}}} + \frac{1}{{C{{C'}^2}}} = 1 + \frac{1}{4} + \frac{1}{4} = \frac{3}{2}\)\( \Rightarrow h = \frac{{\sqrt 6 }}{3}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
\[f'\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = 2.\]
Lời giải
Hướng dẫn giải
Gọi \(H,M\) lần lượt là trung điểm của \(AD,BC\).
Vì \(\Delta SAD\) đều nên \(SH \bot AD\) mà \(\left( {SAD} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right) \Rightarrow SH \bot BC\).
Lại có \(BC \bot HM \Rightarrow BC \bot \left( {SHM} \right) \Rightarrow BC \bot SM\).
Do đó góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {ABCD} \right)\) là \(\widehat {SMH} = 45^\circ \).
Vì \(SH\) là đường cao của \(\Delta SAD\) đều cạnh \(2a\) nên \(SH = a\sqrt 3 \).
Xét \(\Delta SHM\), có \(HM = \frac{{SH}}{{\tan 45^\circ }} = \frac{{a\sqrt 3 }}{1} = a\sqrt 3 \).
Do đó \({V_{S.ABCD}} = \frac{1}{3}SH.AD.HM = \frac{1}{3}.a\sqrt 3 .2a.a\sqrt 3 = 2{a^3}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.