Câu hỏi:

24/12/2025 39 Lưu

(3,5 điểm)

1. Giải các phương trình, bất phương trình sau:

a) \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{4}{{1 - {x^2}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Điều kiện xác định \(x \ne  - 1,\,\,x \ne 1.\)

Ta có: \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{4}{{1 - {x^2}}}\)

\[\frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]

\(\frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\)

\({\left( {x - 1} \right)^2} - {\left( {x + 1} \right)^2} =  - 4\)

\(\left( {x - 1 + x + 1} \right)\left( {x - 1 - x - 1} \right) =  - 4\)

\(2x.\left( { - 2} \right) =  - 4\)

\( - 4x =  - 4\)

    \(x = 1\) (không thỏa mãn).

Vậy phương trình đã cho vô nghiệm.

Câu hỏi cùng đoạn

Câu 2:

1. Giải các phương trình, bất phương trình sau:

b) \(\frac{{3 - 5x}}{3} - \frac{{4x + 1}}{4} \ge \frac{{2x + 1}}{2} + 3\).

Xem lời giải

verified Giải bởi Vietjack

b) \(\frac{{3 - 5x}}{3} - \frac{{4x + 1}}{4} \ge \frac{{2x + 1}}{2} + 3\)

\(\frac{{4\left( {3 - 5x} \right)}}{{12}} - \frac{{3\left( {4x + 1} \right)}}{{12}} \ge \frac{{6\left( {2x + 1} \right)}}{{12}} + \frac{{3 \cdot 12}}{{12}}\)

\[4\left( {3 - 5x} \right) - 3\left( {4x + 1} \right) \ge 6\left( {2x + 1} \right) + 3 \cdot 12\]

\[12 - 20x - 12x - 3 \ge 12x + 6 + 36\]

\[ - 32x + 9 \ge 12x + 42\]

\[ - 44x \ge 33\]

\(x \le - \frac{{33}}{{44}}\)

\(x \le - \frac{3}{4}.\)

Vậy bất phương trình đã cho có nghiệm \(x \le - \frac{3}{4}.\)

Câu 3:

1. Giải các phương trình, bất phương trình sau:

c) \(\sqrt {9x - 9} - \sqrt {4x - 4} + \sqrt {x - 1} = 16.\)

Xem lời giải

verified Giải bởi Vietjack

c) \(\sqrt {9x - 9} - \sqrt {4x - 4} + \sqrt {x - 1} = 16\)     (ĐKXĐ: \(x \ge 1)\)

    9x14x1+x1=16

\(3\sqrt {x - 1} - 2\sqrt {x - 1} + \sqrt {x - 1} = 16\)

\(2\sqrt {x - 1} = 16\)

\(\sqrt {x - 1} = 8\)

\(x - 1 = 16\)

\(x = 17\) (thỏa mãn).

Vậy phương trình đã cho có nghiệm \(x = 17.\)

Câu 4:

2. Giải bài toán sau bằng cách lập hệ phương trình:

Lan có một dung dịch nước muối sinh lí có nồng độ \(1,5\% \) và một dung dịch nước cất không chứa muối (nồng độ \(0\% \)). Lan cần pha trộn dung dịch để thu được 1 lít (1000 ml) dung dịch nước muối dinh lí súc miệng có nồng độ 0,9%. Hỏi cần bao nhiêu ml dung dịch nước muối và bao nhiêu ml nước cất để tạo ra dung dịch mong muốn?

Xem lời giải

verified Giải bởi Vietjack

2. Gọi \(x\) (ml) là thể tích dung dịch nước muối \(1,5\% \)\(y\) (ml) là thể tích nước cất \(0\% \) (\(x,y > 0\)).

Tổng thể tích dung dịch là \(1{\rm{ 000 ml}}\) nên ta có phương trình \(x + y = 1\,\,000\) (1).

Tổng khối lượng muối trong dung dịch là \(0,9\% \) của \(1{\rm{ 000 ml}}\). Lượng muối trong dung dịch ban đầu là \(1,5\% .x\) và trong nước cất là \(0\).

Do đó ta có: \(0,015x + 0y = 0,009.1000\) hay \(0,015x = 9\) (2).

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 1\,\,000\\0,015x = 9\end{array} \right.\).

Giải phương trình \(0,015x = 9\) ta được \(x = 600\) (thỏa mãn).

Thay \(x = 600\) vào phương trình (1), được: \(y = 1000 - 600 = 400\) (thỏa mãn).

Vậy Lan cần pha \(600{\rm{ ml}}\) dung dịch nước muối \(1,5\% \)\(400{\rm{ ml}}\) dung dịch nước cốt \(0\% \) để được dung dịch mong muốn.

Câu 5:

3. Một nhà tài trợ dự kiến tổ chức một buổi đi dã ngoại tập thể nhằm giúp các bạn học sinh vùng cao trải nghiệm thực tế tại một trang trại trong 1 ngày (từ 14h00 ngày hôm trước đến 12h00 ngày hôm sau). Cho biết số tiền nhà tài trợ dự kiến là \(30\) triệu đồng và giá thuê các dịch vụ và phòng nghỉ là \(17\) triệu đồng 1 ngày, giá mỗi suất ăn trưa, ăn tối là \(60\,000\) đồng và mỗi suất ăn sáng là \(30\,000\) đồng.

a) Viết bất phương trình phù hợp mô tả tình huống trên.

b) Hỏi có thể tổ chức cho nhiều nhất bao nhiêu bạn tham gia được?

Xem lời giải

verified Giải bởi Vietjack

3. a) Chi phí ăn uống của mỗi người trong một ngày là \(60\,000 + 60\,000 + 30\,000 = 150\,000\) (đồng).

Gọi \(x\) là số bạn học sinh có thể tham gia \(\left( {x \in \mathbb{N}*} \right)\).

Tổng chi phí phải trả cho buổi dã ngoại có \(x\) bạn tham gia là \(150\,000x + 17\,000\,000\) (đồng).

Vì số tiền nhà tài trợ dự kiến là \(30\) triệu đồng nên ta có bất phương trình:

\(150\,000x + 17\,000\,000 \le 30\,000\,000\).

b) Giải bất phương trình:

          \(150\,000x + 17\,000\,000 \le 30\,000\,000\)

          \(x \le \frac{{260}}{3} \approx 86,7\)

Vậy có thể tổ chức cho nhiều nhất cho \(86\) bạn tham gia.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét biểu thức \[A = \frac{{\sqrt x - 2}}{{\sqrt x + 7}}\].

Với \(x \ge 0,\) ta luôn có \(\sqrt x + 7 > 0.\)

Điều kiện xác định của biểu thức \(A\)\(x \ge 0.\)

Xét biểu thức \(B = \frac{x}{{x - 4}} - \frac{1}{{2 - \sqrt x }} + \frac{1}{{\sqrt x + 2}}\).

Với \(x \ge 0,\) ta có \[x - 4 = \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right).\]

Điều kiện xác định của biểu thức \(B\)\(x \ge 0,\,\,x - 4 \ne 0\) tức là \(x \ge 0,\,\,x \ne 4.\)

Lời giải

a) Chứng minh bốn điểm \[A,M,O,N\] cùng thuộc một đường tròn. (ảnh 1)

a) Vì \(AM,\,\,AN\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) lần lượt tại \(M,\,\,N\) nên \(AM \bot OM,\,\,AN \bot ON.\)

Gọi \[E\] là trung điểm của \[OA\]. Khi đó \(OE = AE = \frac{1}{2}OA.\)

Xét \[\Delta MOA\] vuông tại \[M\]\[ME\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[ME = \frac{1}{2}OA\].

Xét \[\Delta NOA\] vuông tại \[N\]\[NE\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[NE = \frac{1}{2}OA\].

\[NE = ME = OE = AE = \frac{1}{2}OA\] nên bốn điểm \[A,M,O,N\] cùng thuộc đường tròn tâm \[E,\] đường kính \[OA\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP