Câu hỏi:

24/12/2025 14 Lưu

(0,5 điểm) Một tấm bìa cứng hình chữ nhật có chiều dài là \({\rm{50 cm}}\)và chiều rộng là \({\rm{30 cm}}\). Bạn Linh cắt ở mỗi góc một tấm bìa hình vuông cạnh \(x{\rm{ }}\left( {{\rm{cm}}} \right)\) và xếp phần còn lại thành một hình hộp không nắp. Tìm \(x\) để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất.

Một tấm bìa cứng hình chữ nhật có chiều dài là \({\rm{50 cm}}\)và (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Diện tích tấm bìa hình chữ nhật này là: \(50.30 = 1500{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\)

Chiều dài sau khi cắt tấm bìa là: \(50 - 2x{\rm{ }}\left( {{\rm{cm}}} \right)\).

Chiều rộng sau khi cắt tấm bìa là: \(30 - 2x{\rm{ }}\left( {{\rm{cm}}} \right)\).

Diện tích xung quanh của hộp là: \(2x\left( {50 - 2x + 30 - 2x} \right) = 2x\left( {80 - 4x} \right) = - 8{x^2} + 160x{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất thì \( - 8{x^2} + 160x\) đạt giá trị lớn nhất.

Ta có: \( - 8{x^2} + 160x = - 8\left( {{x^2} - 20x + 100} \right) + 800 = - 8{\left( {x - 10} \right)^2} + 800\)

Với mọi \(x > 0,\) ta có: \( - 8{\left( {x - 10} \right)^2} \le 0\) nên \( - 8{\left( {x - 10} \right)^2} + 800 \le 800\).

Dấu “=” xảy ra khi \(x - 10 = 0\) hay \(x = 10\).

Vậy diện tích xung quanh hình hộp chữ nhật là \(800{\rm{ c}}{{\rm{m}}^2}\) khi \(x = 10{\rm{ cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện xác định \(x \ne  - 1,\,\,x \ne 1.\)

Ta có: \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{4}{{1 - {x^2}}}\)

\[\frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]

\(\frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\)

\({\left( {x - 1} \right)^2} - {\left( {x + 1} \right)^2} =  - 4\)

\(\left( {x - 1 + x + 1} \right)\left( {x - 1 - x - 1} \right) =  - 4\)

\(2x.\left( { - 2} \right) =  - 4\)

\( - 4x =  - 4\)

    \(x = 1\) (không thỏa mãn).

Vậy phương trình đã cho vô nghiệm.

Lời giải

a) Xét biểu thức \[A = \frac{{\sqrt x - 2}}{{\sqrt x + 7}}\].

Với \(x \ge 0,\) ta luôn có \(\sqrt x + 7 > 0.\)

Điều kiện xác định của biểu thức \(A\)\(x \ge 0.\)

Xét biểu thức \(B = \frac{x}{{x - 4}} - \frac{1}{{2 - \sqrt x }} + \frac{1}{{\sqrt x + 2}}\).

Với \(x \ge 0,\) ta có \[x - 4 = \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right).\]

Điều kiện xác định của biểu thức \(B\)\(x \ge 0,\,\,x - 4 \ne 0\) tức là \(x \ge 0,\,\,x \ne 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP