Câu hỏi:

24/12/2025 41 Lưu

Cho biểu thức \(P = \left( {\frac{{5 + 4\sqrt x }}{{2x + 5\sqrt x  - 12}} - \frac{2}{{2\sqrt x  - 3}} + \frac{3}{{\sqrt x  + 4}}} \right):\left( {\sqrt x  + \frac{{5 - 6\sqrt x }}{{\sqrt x  + 4}}} \right)\) với \[x \ge 0,\,x \ne \frac{9}{4}.\]

a) Rút gọn biểu thức \[P.\]

b) Tìm giá trị lớn nhất của \[P.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(P = \left( {\frac{{5 + 4\sqrt x - 2(\sqrt x + 4) + 3(2\sqrt x - 3)}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x + 4\sqrt x + 5 - 6\sqrt x }}{{\sqrt x + 4}}} \right)\)

\(P = \left( {\frac{{8\sqrt x - 12}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x - 2\sqrt x + 5}}{{\sqrt x + 4}}} \right)\)

\(P = \frac{4}{{\sqrt x + 4}}.\frac{{\sqrt x + 4}}{{x - 2\sqrt x + 5}} = \frac{4}{{x - 2\sqrt x + 5}}\).

b) Ta có \(x - 2\sqrt x + 5 = {\left( {\sqrt x - 1} \right)^2} + 4 \Rightarrow x - 2\sqrt x + 5 \ge 4\) với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\]

Khi đó \[P \le 1\] với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\] Dấu “ = ” xảy ra khi \(x = 1\).

Giá trị lớn nhất của \[P\]là 1 khi \[x = 1\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\widehat {BKI} = \widehat {BAI}\) (nội tiếp (O) cùng chắn )

\(\widehat {BAI} = \widehat {IAC}\) \( \Rightarrow \widehat {MAQ} = \widehat {MKQ}\) \( \Rightarrow \) tứ giác AMQK nội tiếp

b) Tứ giác AMQK nội tiếp \( \Rightarrow \widehat {MQA} = \widehat {MKA}\), lại có \(\widehat {BKA} = \widehat {BCA}\)(nội tiếp (O) cùng chắn \(\widehat {AB}\)) \( \Rightarrow \) \(\widehat {MQA} = \widehat {BCA}\) \( \Rightarrow \) MQ // BC

H là trực tâm của \(\Delta \) ABC nên AH \( \bot \) BC \( \Rightarrow \) MQ \( \bot \) AH

\(\Delta \) AHQHD \( \bot \) AQ, MQ \( \bot \) AH nên M là trực tâm \( \Rightarrow \) AM \( \bot \) HQ

\(\Delta \) APQAM là phân giác, AM là đường cao nên \(\Delta \) APQ cân tại A.

c) Gọi N là giao điểm của AICE. \(\widehat {AIK} = \widehat {ABK}\) (nội tiếp (O) cùng chắn ), \(\widehat {ABD} = \widehat {ACE}\) (cùng phụ với \(\widehat {BAC}\)) \( \Rightarrow \) \(\widehat {NIQ} = \widehat {NCQ}\) \( \Rightarrow \) tứ giác NICQ nội tiếp \( \Rightarrow \)\(\widehat {QNC} = \widehat {QIC}\)

\(\widehat {BEC} = \widehat {BDC} = {90^0}\) nên tứ giác BEDC nội tiếp \( \Rightarrow \widehat {DEC} = \widehat {DBC}\), \(\widehat {KBC} = \widehat {KIC}\) (nội tiếp (O) cùng chắn ) \( \Rightarrow \widehat {QNC} = \widehat {DEC}\) \( \Rightarrow \) NQ // ED

Tứ giác NICQ nội tiếp nên \(\widehat {MNQ} = \widehat {QCI}\), tứ giác AMQK nội tiếp nên \(\widehat {QMN} = \widehat {AKQ}\)\(\widehat {AKI} = \widehat {ACI}\) (nội tiếp (O) cùng chắn ) \( \Rightarrow \) \(\widehat {QMN} = \widehat {QNM}\) \( \Rightarrow \) \(\Delta \) QMN cân \( \Rightarrow \) QM = QN.

MQ // BC \( \Rightarrow \) \(\frac{{MQ}}{{BC}} = \frac{{DQ}}{{DC}}\), NQ // ED \( \Rightarrow \) \(\frac{{NQ}}{{ED}} = \frac{{CQ}}{{CD}}\), lại có MQ = NQ nên \(\frac{{MQ}}{{BC}} + \frac{{MQ}}{{DE}} = \frac{{DQ}}{{DC}} + \frac{{CQ}}{{CD}} = 1\) \( \Rightarrow \) \(\frac{1}{{BC}} + \frac{1}{{DE}} = \frac{1}{{MQ}}\).

Lời giải

a) \[{x^2} - y = {a^2};\,{x^2} + y = {b^2}\] với \[a,\,b\] là các số tự nhiên \[ \Rightarrow 2y = {b^2} - {a^2}\]

Ta có \[{b^2} - {a^2}\] là số chẵn suy ra \[a,\,b\] là hai số cùng chẵn hoặc cùng lẻ\[ \Rightarrow (b - a)(b + a) \vdots 4\] \[ \Rightarrow y \vdots 2\].

b) \[{a^3} - 2{(a + b)^2} = {b^3} + 19 \Leftrightarrow (a - b - 2)({a^2} + ab + {b^2}) = 2ab + 19\]

\(2ab + 19 > 0,{\rm{ }}{a^2} + ab + {b^2} > 0 \Rightarrow a - b - 2 \ge 1\)\( \Rightarrow a - b \ge 3\)

Từ \[a - b - 2 \ge 1 \Rightarrow {a^2} + ab + {b^2} \le 2ab + 19\]\( \Rightarrow {\left( {a - b} \right)^2} < 19\)\( \Rightarrow a - b \le 4\)

Vì \(2ab + 19\) lẻ \( \Rightarrow a - b - 2\) lẻ \( \Rightarrow a - b\) lẻ \( \Rightarrow \) \(a - b = 3\)

Từ \(a - b = 3 \Rightarrow {b^2} + 3b - 10 = 0\)\( \Rightarrow b = - 5\) (loại) hoặc \(b = 2\). Vậy \(b = 2;a = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP