Câu hỏi:

24/12/2025 46 Lưu

Cho tam giác \[ABC\] nhọn (\[AB < AC\]) nội tiếp đường tròn tâm \[O\]. Hai đường cao \[BD,\,{\rm{ }}CE\] của tam giác \[ABC\] cắt nhau tại \[H\]. Tia phân giác của góc \[BAC\] cắt đường thẳng \[BD\] và đường tròn \[(O)\] theo thứ tự tại \[M\] và \[I\] (\[I\] khác \[A\]). Đường thẳng \[BD\] cắt đường tròn \[(O)\] tại \[K\] (\[K\] khác \[B\]), hai đường thẳng \[AC\] và \[IK\] cắt nhau tại \[Q\], hai đường thẳng \[QH\] và \[AB\] cắt nhau tại \[P\]. Chứng minh:

a) Tứ giác \[AMQK\] nội tiếp;

b) Tam giác \[APQ\] cân tại A;

c) \[\frac{1}{{BC}} + \frac{1}{{DE}} = \frac{1}{{MQ}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\widehat {BKI} = \widehat {BAI}\) (nội tiếp (O) cùng chắn )

\(\widehat {BAI} = \widehat {IAC}\) \( \Rightarrow \widehat {MAQ} = \widehat {MKQ}\) \( \Rightarrow \) tứ giác AMQK nội tiếp

b) Tứ giác AMQK nội tiếp \( \Rightarrow \widehat {MQA} = \widehat {MKA}\), lại có \(\widehat {BKA} = \widehat {BCA}\)(nội tiếp (O) cùng chắn \(\widehat {AB}\)) \( \Rightarrow \) \(\widehat {MQA} = \widehat {BCA}\) \( \Rightarrow \) MQ // BC

H là trực tâm của \(\Delta \) ABC nên AH \( \bot \) BC \( \Rightarrow \) MQ \( \bot \) AH

\(\Delta \) AHQHD \( \bot \) AQ, MQ \( \bot \) AH nên M là trực tâm \( \Rightarrow \) AM \( \bot \) HQ

\(\Delta \) APQAM là phân giác, AM là đường cao nên \(\Delta \) APQ cân tại A.

c) Gọi N là giao điểm của AICE. \(\widehat {AIK} = \widehat {ABK}\) (nội tiếp (O) cùng chắn ), \(\widehat {ABD} = \widehat {ACE}\) (cùng phụ với \(\widehat {BAC}\)) \( \Rightarrow \) \(\widehat {NIQ} = \widehat {NCQ}\) \( \Rightarrow \) tứ giác NICQ nội tiếp \( \Rightarrow \)\(\widehat {QNC} = \widehat {QIC}\)

\(\widehat {BEC} = \widehat {BDC} = {90^0}\) nên tứ giác BEDC nội tiếp \( \Rightarrow \widehat {DEC} = \widehat {DBC}\), \(\widehat {KBC} = \widehat {KIC}\) (nội tiếp (O) cùng chắn ) \( \Rightarrow \widehat {QNC} = \widehat {DEC}\) \( \Rightarrow \) NQ // ED

Tứ giác NICQ nội tiếp nên \(\widehat {MNQ} = \widehat {QCI}\), tứ giác AMQK nội tiếp nên \(\widehat {QMN} = \widehat {AKQ}\)\(\widehat {AKI} = \widehat {ACI}\) (nội tiếp (O) cùng chắn ) \( \Rightarrow \) \(\widehat {QMN} = \widehat {QNM}\) \( \Rightarrow \) \(\Delta \) QMN cân \( \Rightarrow \) QM = QN.

MQ // BC \( \Rightarrow \) \(\frac{{MQ}}{{BC}} = \frac{{DQ}}{{DC}}\), NQ // ED \( \Rightarrow \) \(\frac{{NQ}}{{ED}} = \frac{{CQ}}{{CD}}\), lại có MQ = NQ nên \(\frac{{MQ}}{{BC}} + \frac{{MQ}}{{DE}} = \frac{{DQ}}{{DC}} + \frac{{CQ}}{{CD}} = 1\) \( \Rightarrow \) \(\frac{1}{{BC}} + \frac{1}{{DE}} = \frac{1}{{MQ}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[{x^2} - y = {a^2};\,{x^2} + y = {b^2}\] với \[a,\,b\] là các số tự nhiên \[ \Rightarrow 2y = {b^2} - {a^2}\]

Ta có \[{b^2} - {a^2}\] là số chẵn suy ra \[a,\,b\] là hai số cùng chẵn hoặc cùng lẻ\[ \Rightarrow (b - a)(b + a) \vdots 4\] \[ \Rightarrow y \vdots 2\].

b) \[{a^3} - 2{(a + b)^2} = {b^3} + 19 \Leftrightarrow (a - b - 2)({a^2} + ab + {b^2}) = 2ab + 19\]

\(2ab + 19 > 0,{\rm{ }}{a^2} + ab + {b^2} > 0 \Rightarrow a - b - 2 \ge 1\)\( \Rightarrow a - b \ge 3\)

Từ \[a - b - 2 \ge 1 \Rightarrow {a^2} + ab + {b^2} \le 2ab + 19\]\( \Rightarrow {\left( {a - b} \right)^2} < 19\)\( \Rightarrow a - b \le 4\)

Vì \(2ab + 19\) lẻ \( \Rightarrow a - b - 2\) lẻ \( \Rightarrow a - b\) lẻ \( \Rightarrow \) \(a - b = 3\)

Từ \(a - b = 3 \Rightarrow {b^2} + 3b - 10 = 0\)\( \Rightarrow b = - 5\) (loại) hoặc \(b = 2\). Vậy \(b = 2;a = 5\).

Lời giải

a) \(P = \left( {\frac{{5 + 4\sqrt x - 2(\sqrt x + 4) + 3(2\sqrt x - 3)}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x + 4\sqrt x + 5 - 6\sqrt x }}{{\sqrt x + 4}}} \right)\)

\(P = \left( {\frac{{8\sqrt x - 12}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x - 2\sqrt x + 5}}{{\sqrt x + 4}}} \right)\)

\(P = \frac{4}{{\sqrt x + 4}}.\frac{{\sqrt x + 4}}{{x - 2\sqrt x + 5}} = \frac{4}{{x - 2\sqrt x + 5}}\).

b) Ta có \(x - 2\sqrt x + 5 = {\left( {\sqrt x - 1} \right)^2} + 4 \Rightarrow x - 2\sqrt x + 5 \ge 4\) với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\]

Khi đó \[P \le 1\] với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\] Dấu “ = ” xảy ra khi \(x = 1\).

Giá trị lớn nhất của \[P\]là 1 khi \[x = 1\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP