Cho tam giác \[ABC\] nhọn (\[AB < AC\]) nội tiếp đường tròn tâm \[O\]. Hai đường cao \[BD,\,{\rm{ }}CE\] của tam giác \[ABC\] cắt nhau tại \[H\]. Tia phân giác của góc \[BAC\] cắt đường thẳng \[BD\] và đường tròn \[(O)\] theo thứ tự tại \[M\] và \[I\] (\[I\] khác \[A\]). Đường thẳng \[BD\] cắt đường tròn \[(O)\] tại \[K\] (\[K\] khác \[B\]), hai đường thẳng \[AC\] và \[IK\] cắt nhau tại \[Q\], hai đường thẳng \[QH\] và \[AB\] cắt nhau tại \[P\]. Chứng minh:
a) Tứ giác \[AMQK\] nội tiếp;
b) Tam giác \[APQ\] cân tại A;
c) \[\frac{1}{{BC}} + \frac{1}{{DE}} = \frac{1}{{MQ}}\].
Cho tam giác \[ABC\] nhọn (\[AB < AC\]) nội tiếp đường tròn tâm \[O\]. Hai đường cao \[BD,\,{\rm{ }}CE\] của tam giác \[ABC\] cắt nhau tại \[H\]. Tia phân giác của góc \[BAC\] cắt đường thẳng \[BD\] và đường tròn \[(O)\] theo thứ tự tại \[M\] và \[I\] (\[I\] khác \[A\]). Đường thẳng \[BD\] cắt đường tròn \[(O)\] tại \[K\] (\[K\] khác \[B\]), hai đường thẳng \[AC\] và \[IK\] cắt nhau tại \[Q\], hai đường thẳng \[QH\] và \[AB\] cắt nhau tại \[P\]. Chứng minh:
a) Tứ giác \[AMQK\] nội tiếp;
b) Tam giác \[APQ\] cân tại A;
c) \[\frac{1}{{BC}} + \frac{1}{{DE}} = \frac{1}{{MQ}}\].
Quảng cáo
Trả lời:
a) \(\widehat {BKI} = \widehat {BAI}\) (nội tiếp (O) cùng chắn )
mà \(\widehat {BAI} = \widehat {IAC}\) \( \Rightarrow \widehat {MAQ} = \widehat {MKQ}\) \( \Rightarrow \) tứ giác AMQK nội tiếp
b) Tứ giác AMQK nội tiếp \( \Rightarrow \widehat {MQA} = \widehat {MKA}\), lại có \(\widehat {BKA} = \widehat {BCA}\)(nội tiếp (O) cùng chắn \(\widehat {AB}\)) \( \Rightarrow \) \(\widehat {MQA} = \widehat {BCA}\) \( \Rightarrow \) MQ // BC
H là trực tâm của \(\Delta \) ABC nên AH \( \bot \) BC \( \Rightarrow \) MQ \( \bot \) AH
\(\Delta \) AHQ có HD \( \bot \) AQ, MQ \( \bot \) AH nên M là trực tâm \( \Rightarrow \) AM \( \bot \) HQ
\(\Delta \) APQ có AM là phân giác, AM là đường cao nên \(\Delta \) APQ cân tại A.
c) Gọi N là giao điểm của AI và CE. \(\widehat {AIK} = \widehat {ABK}\) (nội tiếp (O) cùng chắn ), \(\widehat {ABD} = \widehat {ACE}\) (cùng phụ với \(\widehat {BAC}\)) \( \Rightarrow \) \(\widehat {NIQ} = \widehat {NCQ}\) \( \Rightarrow \) tứ giác NICQ nội tiếp \( \Rightarrow \)\(\widehat {QNC} = \widehat {QIC}\)
Có \(\widehat {BEC} = \widehat {BDC} = {90^0}\) nên tứ giác BEDC nội tiếp \( \Rightarrow \widehat {DEC} = \widehat {DBC}\), \(\widehat {KBC} = \widehat {KIC}\) (nội tiếp (O) cùng chắn ) \( \Rightarrow \widehat {QNC} = \widehat {DEC}\) \( \Rightarrow \) NQ // ED
Tứ giác NICQ nội tiếp nên \(\widehat {MNQ} = \widehat {QCI}\), tứ giác AMQK nội tiếp nên \(\widehat {QMN} = \widehat {AKQ}\) mà \(\widehat {AKI} = \widehat {ACI}\) (nội tiếp (O) cùng chắn ) \( \Rightarrow \) \(\widehat {QMN} = \widehat {QNM}\) \( \Rightarrow \) \(\Delta \) QMN cân \( \Rightarrow \) QM = QN.
MQ // BC \( \Rightarrow \) \(\frac{{MQ}}{{BC}} = \frac{{DQ}}{{DC}}\), NQ // ED \( \Rightarrow \) \(\frac{{NQ}}{{ED}} = \frac{{CQ}}{{CD}}\), lại có MQ = NQ nên \(\frac{{MQ}}{{BC}} + \frac{{MQ}}{{DE}} = \frac{{DQ}}{{DC}} + \frac{{CQ}}{{CD}} = 1\) \( \Rightarrow \) \(\frac{1}{{BC}} + \frac{1}{{DE}} = \frac{1}{{MQ}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(P = \left( {\frac{{5 + 4\sqrt x - 2(\sqrt x + 4) + 3(2\sqrt x - 3)}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x + 4\sqrt x + 5 - 6\sqrt x }}{{\sqrt x + 4}}} \right)\)
\(P = \left( {\frac{{8\sqrt x - 12}}{{(2\sqrt x - 3)(\sqrt x + 4)}}} \right):\left( {\frac{{x - 2\sqrt x + 5}}{{\sqrt x + 4}}} \right)\)
\(P = \frac{4}{{\sqrt x + 4}}.\frac{{\sqrt x + 4}}{{x - 2\sqrt x + 5}} = \frac{4}{{x - 2\sqrt x + 5}}\).
b) Ta có \(x - 2\sqrt x + 5 = {\left( {\sqrt x - 1} \right)^2} + 4 \Rightarrow x - 2\sqrt x + 5 \ge 4\) với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\]
Khi đó \[P \le 1\] với \[\forall x \ge 0,\,x \ne \frac{9}{4}.\] Dấu “ = ” xảy ra khi \(x = 1\).
Giá trị lớn nhất của \[P\]là 1 khi \[x = 1\]
Lời giải
a) Điều kiện: \[x \ge - 1\]
Ta có \[{x^2} + x - 6 = 3(x - 2)\sqrt {x + 1} \Leftrightarrow (x - 2)(x + 3) - 3(x - 2)\sqrt {x + 1} = 0\]
\[ \Leftrightarrow (x - 2)(x + 3 - 3\sqrt {x + 1} ) = 0 \Leftrightarrow x = 2\,\](thỏa mãn đk) hoặc \[x + 3 - 3\sqrt {x + 1} = 0\]
\[x + 3 - 3\sqrt {x + 1} = 0 \Leftrightarrow x + 3 = 3\sqrt {x + 1} \Leftrightarrow {x^2} - 3x = 0 \Leftrightarrow {x_1} = 0;{x_2} = 3\] (thỏa mãn đk)
Tập nghiệm của phương trình là \[S = \left\{ {0;2;3} \right\}\].
b) \[{x^2} - 2x - xy + y + 1 = 0 \Leftrightarrow (x - 1)(x - 1 - y) = 0 \Leftrightarrow x = 1\] hoặc \[y = x - 1\]
Với \[x = 1\] ta có phương trình \[\sqrt {{y^2} + 4} = 2 \Leftrightarrow y = 0\]
Với \[y = x - 1\] ta có phương trình \[{x^2} + 3x - \sqrt {{x^2} + 3x} - 2 = 0\]
Đặt \[t = \sqrt {{x^2} + 3x} ,\,{\rm{ }}t \ge 0,\]pt trở thành \[{t^2} - t - 2 = 0 \Leftrightarrow {t_1} = - 1\] (loại), \[t = 2\] (thỏa mãn)
Với \[t = 2\] ta được \[{x^2} + 3x - 4 = 0 \Leftrightarrow {x_1} = 1;{\rm{ }}{x_2} = - 4\].
Vậy hệ phương trình có hai nghiệm là \[\left( {1;0} \right);\left( { - 4; - 5} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.